46 research outputs found

    αIIbβ3-integrin mediated adhesion of human platelets to a fibrinogen matrix triggers phospholipase C activation and phosphatidylinositol 3′,4′-bisphosphate accumulation

    Get PDF
    AbstractThis study focused on the variations in phosphoinositide metabolism depending upon αIIbβ3-integrin/fibrinogen interaction without previous activation of platelet agonist receptors. We found that adhesion of resting human platelets to immobilized fibrinogen stimulates phosphatidic acid production and a concomitant decrease in phosphatidylinositol 4′,5′-bisphosphate. These results, and the absence of a transphosphatidylation reaction, argue in favor of the activation of a phospholipase C. Moreover, we observed the accumulation of phosphatidylinositol 3′,4′-bisphosphate in adherent platelets as a consequence of the activation of a phosphatidylinositol 3-kinase. This effect was inhibited by ADP scavengers. Our results demonstrate that in adherent platelets, whereas phosphatidylinositol 3-kinase activation is controlled by both αIIbβ-integrin engagement and released ADP, phospholipase C stimulation is triggered only by αIIbβ-integrin/fibrinogen interaction

    A New α5β1 Integrin-Dependent Survival Pathway Through GSK3β Activation in Leukemic Cells

    Get PDF
    Cell survival mediated by integrin engagement has been implicated in cell adhesion-mediated drug resistance. We have recently demonstrated that the activation of glycogen synthase kinase 3 beta (GSK3beta) is a new pathway supporting the chemoresistance of leukemic cells adhered to fibronectin.We show here that in conditions of serum starvation, the fibronectin receptor alpha(5)beta(1) integrin, but not alpha(4)beta(1), induced activation of GSK3beta through Ser-9 dephosphorylation in adherent U937 cells. The GSK3beta-dependent survival pathway occurred in adherent leukemic cells from patients but not in the HL-60 and KG1 cell lines. In adhesion, activated GSK3beta was found in the cytosol/plasma membrane compartment and was co-immunoprecipitated with alpha(5) integrin, the phosphatase PP2A and the scaffolding protein RACK1. PP2A and its regulatory subunit B' regulated the Ser-9 phosphorylation of GSK3beta. In adherent leukemic cells, alpha(5)beta(1) integrin but not alpha(4)beta(1) upregulated the resistance to TNFalpha-induced apoptosis. Both extrinsic and intrinsic apoptotic pathways were under the control of alpha(5)beta(1) and GSK3beta.Our data show that, upon serum starvation, alpha(5)beta(1) integrin engagement could regulate specific pro-survival functions through the activation of GSK3beta

    Thrombin modifies growth, proliferation and apoptosis of human colon organoids: a protease-activated receptor 1- and protease-activated receptor 4-dependent mechanism

    Get PDF
    International audienceExperimental Approach: Crypts were isolated from human colonic resections and cultured for 6 days, forming human colon organoids. Cultured organoids were exposed to 10 and 50 mU·mL−1 of thrombin, in the presence or not of protease‐activated receptor (PAR) antagonists. Organoid morphology, metabolism, proliferation and apoptosis were followed.Key Results: Thrombin favoured organoid maturation leading to a decreased number of immature cystic structures and a concomitant increased number of larger structures releasing cell debris and apoptotic cells. The size of budding structures, metabolic activity and proliferation were significantly reduced in organoid cultures exposed to thrombin, while apoptosis was dramatically increased. Both PAR1 and PAR4 antagonists inhibited apoptosis regardless of thrombin doses. Thrombin‐induced inhibition of proliferation and metabolic activity were reversed by PAR4 antagonist for thrombin's lowest dose and by PAR1 antagonist for thrombin's highest dose.Conclusions and Implications: Overall, our data suggest that the presence of thrombin in the vicinity of human colon epithelial cells favours their maturation at the expense of their regenerative capacities. Our data point to thrombin and its two receptors PAR1 and PAR4 as potential molecular targets for epithelial repair therapies

    Regulation des activites phosphoinositide kinases dans la plaquette sanguine

    No full text
    SIGLEAvailable from INIST (FR), Document Supply Service, under shelf-number : T 84728 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    GSK3β, a Master Kinase in the Regulation of Adult Stem Cell Behavior

    No full text
    In adult stem cells, Glycogen Synthase Kinase 3β (GSK3β) is at the crossroad of signaling pathways controlling survival, proliferation, adhesion and differentiation. The microenvironment plays a key role in the regulation of these cell functions and we have demonstrated that the GSK3β activity is strongly dependent on the engagement of integrins and protease-activated receptors (PARs). Downstream of the integrin α5β1 or PAR2 activation, a molecular complex is organized around the scaffolding proteins RACK1 and β-arrestin-2 respectively, containing the phosphatase PP2A responsible for GSK3β activation. As a consequence, a quiescent stem cell phenotype is established with high capacities to face apoptotic and metabolic stresses. A protective role of GSK3β has been found for hematopoietic and intestinal stem cells. Latters survived to de-adhesion through PAR2 activation, whereas formers were protected from cytotoxicity through α5β1 engagement. However, a prolonged activation of GSK3β promoted a defect in epithelial regeneration and a resistance to chemotherapy of leukemic cells, paving the way to chronic inflammatory diseases and to cancer resurgence, respectively. In both cases, a sexual dimorphism was measured in GSK3β-dependent cellular functions. GSK3β activity is a key marker for inflammatory and cancer diseases allowing adjusted therapy to sex, age and metabolic status of patients
    corecore