221 research outputs found

    The Pattern Speed of the Galactic Bar

    Get PDF
    Most late-type stars in the solar neighborhood have velocities similar to the local standard of rest (LSR), but there is a clearly separated secondary component corresponding to a slower rotation and a mean outward motion. Detailed simulations of the response of a stellar disk to a central bar show that such a bi-modality is expected from outer-Lindblad resonant scattering. When constraining the run of the rotation curve by the proper motion of Sgr A* and the terminal gas velocities, the value observed for the rotation velocity separating the two components results in a value of (53+/-3)km/s/kpc for the pattern speed of the bar, only weakly dependent on the precise values for Ro and bar angle phi.Comment: 5 pages LaTeX, 2 Figs, accepted for publication in ApJ Letter

    The Effect of the Outer Lindblad Resonance of the Galactic Bar on the Local Stellar Velocity Distribution

    Full text link
    Hydro-dynamical modeling of the inner Galaxy suggest that the radius of the outer Lindblad resonance (OLR) of the Galactic bar lies in the vicinity of the Sun. How does this resonance affect the distribution function in the outer parts of a barred disk, and can we identify any effect of the resonance in the velocity distribution f(v) actually observed in the solar neighborhood? To answer these questions, detailed simulations of f(v) in the outer parts of an exponential stellar disks with nearly flat rotation curves and a rotating central bar have been performed. For a model resembling the old stellar disk, the OLR causes a distinct feature in f(v) over a significant fraction of the outer disk. For positions <2kpc outside the OLR radius and at bar angles of \~10-70 degrees, f(v) inhibits a bi-modality between the low-velocity stars moving like the local standard of rest (LSR) and a secondary mode of stars predominantly moving outward and rotating more slowly than the LSR. Such a bi-modality is indeed present in f(v) inferred from the Hipparcos data for late-type stars in the solar neighborhood. If one interpretes this observed bi-modality as induced by the OLR -- and there are hardly any viable alternatives -- then one is forced to deduce that the OLR radius is slightly smaller than Ro. Moreover, by a quantitative comparison of the observed with the simulated distributions one finds that the pattern speed of the bar is 1.85+/-0.15 times the local circular frequency, where the error is dominated by the uncertainty in bar angle and local circular speed. Also other, less prominent but still significant, features in the observed f(v) resemble properties of the simulated velocity distributions, in particular a ripple caused by orbits trapped in the outer 1:1 resonance.Comment: 14 pages, 10 figures (Fig.2 in full resolution available upon request), accepted for publication in A

    The Galactic Kinematics of Mira Variables

    Get PDF
    The galactic kinematics of Mira variables derived from radial velocities, Hipparcos proper motions and an infrared period-luminosity relation are reviewed. Local Miras in the 145-200day period range show a large asymmetric drift and a high net outward motion in the Galaxy. Interpretations of this phenomenon are considered and (following Feast and Whitelock 2000) it is suggested that they are outlying members of the bulge-bar population and indicate that this bar extends beyond the solar circle.Comment: 7 pages, 2 figure, to be published in Mass-Losing Pulsating Stars and their Circumstellar Matter, Y. Nakada & M. Honma (eds) Kluwer ASSL serie

    Population analysis of open clusters: radii and mass segregation

    Get PDF
    Aims: Based on our well-determined sample of open clusters in the all-sky catalogue ASCC-2.5 we derive new linear sizes of some 600 clusters, and investigate the effect of mass segregation of stars in open clusters. Methods: Using statistical methods, we study the distribution of linear sizes as a function of spatial position and cluster age. We also examine statistically the distribution of stars of different masses within clusters as a function of the cluster age. Results: No significant dependence of the cluster size on location in the Galaxy is detected for younger clusters (< 200 Myr), whereas older clusters inside the solar orbit turned out to be, on average, smaller than outside. Also, small old clusters are preferentially found close to the Galactic plane, whereas larger ones more frequently live farther away from the plane and at larger Galactocentric distances. For clusters with (V - M_V) < 10.5, a clear dependence of the apparent radius on age has been detected: the cluster radii decrease by a factor of about 2 from an age of 10 Myr to an age of 1 Gyr. A detailed analysis shows that this observed effect can be explained by mass segregation and does not necessarily reflect a real decrease of cluster radii. We found evidence for the latter for the majority of clusters older than 30 Myr. Among the youngest clusters (between 5 and 30 Myr), there are some clusters with a significant grade of mass segregation, whereas some others show no segregation at all. At a cluster age between 50 and 100 Myrs, the distribution of stars of different masses becomes more regular over cluster area. In older clusters the evolution of the massive stars is the most prominent effect we observe.Comment: 14 pages, 12 figures, accepted for publication in Astronomy & Astrophysic

    Constraining the fundamental parameters of the O-type binary CPD-41degr7733

    Get PDF
    Using a set of high-resolution spectra, we studied the physical and orbital properties of the O-type binary CPD-41 7733, located in the core of \ngc. We report the unambiguous detection of the secondary spectral signature and we derive the first SB2 orbital solution of the system. The period is 5.6815 +/- 0.0015 d and the orbit has no significant eccentricity. CPD-41 7733 probably consists of stars of spectral types O8.5 and B3. As for other objects in the cluster, we observe discrepant luminosity classifications while using spectroscopic or brightness criteria. Still, the present analysis suggests that both components display physical parameters close to those of typical O8.5 and B3 dwarfs. We also analyze the X-ray light curves and spectra obtained during six 30 ks XMM-Newton pointings spread over the 5.7 d period. We find no significant variability between the different pointings, nor within the individual observations. The CPD-41 7733 X-ray spectrum is well reproduced by a three-temperature thermal mekal model with temperatures of 0.3, 0.8 and 2.4 keV. No X-ray overluminosity, resulting e.g. from a possible wind interaction, is observed. The emission of CPD-41 7733 is thus very representative of typical O-type star X-ray emission.Comment: Accepted by ApJ, 15 pages, 9 figure

    Towards absolute scales of radii and masses of open clusters

    Get PDF
    Aims: In this paper we derive tidal radii and masses of open clusters in the nearest kiloparsecs around the Sun. Methods: For each cluster, the mass is estimated from tidal radii determined from a fitting of three-parametric King's profiles to the observed integrated density distribution. Different samples of members are investigated. Results: For 236 open clusters, all contained in the catalogue ASCC-2.5, we obtain core and tidal radii, as well as tidal masses. The distributions of the core and tidal radii peak at about 1.5 pc and 7 - 10 pc, respectively. A typical relative error of the core radius lies between 15% and 50%, whereas, for the majority of clusters, the tidal radius was determined with a relative accuracy better than 20%. Most of the clusters have tidal masses between 50 and 1000 m⊙m_\odot, and for about half of the clusters, the masses were obtained with a relative error better than 50%.Comment: 11 pages, 7 figures, accepted for publication in Astronomy & Astrophysic

    Variability of Be Stars in Southern Open Clusters

    Full text link
    We recently discovered a large number of highly active Be stars in the open cluster NGC 3766, making it an excellent location to study the formation mechanism of Be star disks. To explore whether similar disk appearances and/or disappearances are common among the Be stars in other open clusters, we present here multiple epochs of H-alpha spectroscopy for 296 stars in eight open clusters. We identify 12 new transient Be stars and confirm 17 additional Be stars with relatively stable disks. By comparing the H-alpha equivalent widths to the photometric y - H-alpha colors, we present a method to estimate the strength of the H-alpha emission when spectroscopy is not available. For a subset of 128 stars in four open clusters, we also use blue optical spectroscopy and available Stromgren photometry to measure their projected rotational velocities, effective temperatures, and polar surface gravities. We combine our Be star detections from these four clusters to investigate physical differences between the transient Be stars, stable Be stars, and normal B-type stars with no line emission. Both types of Be stars are faster rotating populations than normal B-type stars, and we find no significant physical differences between the transient and stable Be stars in our sample.Comment: Accepted to ApJ; small corrections to Table 5 and associated figure

    Spectroscopy of New High Proper Motion Stars in the Northern Sky. I. New Nearby Stars, New High Velocity Stars, and an Enhanced Classification Scheme for M Dwarfs

    Full text link
    We define an enhanced spectral classification scheme for M dwarf stars, and use it to derive spectral classification of 104 northern stars with proper motions larger than 0.5"/yr which we discovered in a survey of high proper motion stars at low galactic latitudes. The final tally is as follows: 54 M dwarfs, 25 sdK and sdM subdwarfs, 14 esdK and esdM extreme subdwarfs, and 11 DA and DC white dwarfs. Among the most interesting cases, we find one star to be the coolest subdwarf ever reported (LSR2036+5059, with spectral type sdM7.5), a new M9.0 dwarf only about 6pc distant (LSR1835+3259), and a new M6.5 dwarf only 7pc from the Sun (LSR2124+4003). Spectroscopic distances suggests that 27 of the M dwarfs, 3 of the white dwarfs, and one of the subdwarfs (LSR2036+5059) are within 25pc of the Sun, making them excellent candidates for inclusion in the solar neighborhood census. Estimated sky-projected velocities suggest that most of our subdwarfs and extreme subdwarfs have halo kinematics. We find that several white dwarfs and non metal-poor M dwarfs also have kinematics consistent with the halo, and we briefly discuss their possible origin.Comment: 53 pages, 18 figures, 5 tables, accepted by The Astronomical Journal; this updated version includes radial velocities for the stars and an expanded discussio
    • …
    corecore