93 research outputs found

    Automatic Detection of Blue-White Veil and Related Structures in Dermoscopy Images

    Full text link
    Dermoscopy is a non-invasive skin imaging technique, which permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. One of the most important features for the diagnosis of melanoma in dermoscopy images is the blue-white veil (irregular, structureless areas of confluent blue pigmentation with an overlying white "ground-glass" film). In this article, we present a machine learning approach to the detection of blue-white veil and related structures in dermoscopy images. The method involves contextual pixel classification using a decision tree classifier. The percentage of blue-white areas detected in a lesion combined with a simple shape descriptor yielded a sensitivity of 69.35% and a specificity of 89.97% on a set of 545 dermoscopy images. The sensitivity rises to 78.20% for detection of blue veil in those cases where it is a primary feature for melanoma recognition

    Age, gender, and topography influence the clinical and dermoscopic appearance of lentigo maligna

    Get PDF
    BACKGROUND: Little is known about the frequency of clinical and dermoscopic patterns of lentigo maligna (LM) in relation to specific anatomic subsites and patients characteristics. OBJECTIVE: We sought to assess the frequency of clinical and dermoscopic features of LM and to correlate them to specific anatomic subsites, and patients' age and gender. METHODS: This was a retrospective analysis of clinical and dermoscopic images of a series of consecutive, histopathologically diagnosed, facial and extrafacial LM. RESULTS: A total of 201 cases from 200 patients (mean age 69.51 \ub1 12.26 years) including 120 women were collected. Most cases were located on the face (n = 192, 95.5%). In 102 cases, LM presented as clinically solitary facial macule (s/LM), whereas it was associated with multiple surrounding freckles in the remaining cases. s/LM were significantly smaller (10 mm; P = .020) and associated with younger age compared with LM associated with multiple surrounding freckles (mean age 67.73 \ub1 12.68 years vs 71.34 \ub1 11.59 years, respectively; P = .036). Dermoscopically, gray color irrespective of a specific pattern was the most prevalent finding seen in 178 (88.6%) cases. LIMITATIONS: This was a retrospective study. CONCLUSIONS: The knowledge about patient age, patient gender, and site-related clinical features of LM associated with gray color upon dermoscopy may enhance the clinical recognition of LM

    Dark homogeneous streak dermoscopic pattern correlating with specific KIT mutations in melanoma

    Get PDF
    Mutations driving melanoma growth have diagnostic, prognostic, and therapeutic implications. Traditional classification systems do not correlate optimally with underlying melanoma growth-promoting mutations. Our objective was to determine whether unique dermoscopic growth patterns directly correlate with driving mutations. OBSERVATIONS: We evaluated common driving mutations in 4 different dermoscopic patterns (rhomboidal, negative pigmented network, polygonal, and dark homogeneous streaks) of primary cutaneous melanomas; 3 melanomas per pattern were tested. Three of the 4 patterns lacked common mutations in BRAF, NRAS, KIT, GNAQ, and HRAS. One pattern, the dark homogeneous streaks pattern, had unique KIT mutations in the second catalytic domain of KIT in exon 17 for all 3 samples tested. Two tumors with the dark homogeneous streaks pattern turned out to be different primary melanomas from the same patient and had different sequence mutations but had an impact on the same KIT domain. CONCLUSIONS AND RELEVANCE: While future study is required, these results have multiple implications. (1) The underlying melanoma-driving mutations may give rise to specific dermoscopic growth patterns, (2) BRAF/NRAS mutations in early melanomas may not be as common as previously thought, and (3) patients may be predisposed to developing specific driving mutations giving rise to melanomas or nevi of similar growth patterns

    Sector Expansion and Elliptical Modeling of Blue-Gray Ovoids for Basal Cell Carcinoma Discrimination in Dermoscopy Images

    Get PDF
    Background: Blue-gray ovoids (B-GOs), a critical dermoscopic structure for basal cell carcinoma (BCC), offer an opportunity for automatic detection of BCC. Due to variation in size and color, B-GOs can be easily mistaken for similar structures in benign lesions. Analysis of these structures could afford accurate characterization and automatic recognition of B-GOs, furthering the goal of automatic BCC detection. This study utilizes a novel segmentation method to discriminate B-GOs from their benign mimics. Methods: Contact dermoscopy images of 68 confirmed BCCs with B-GOs were obtained. Another set of 131 contact dermoscopic images of benign lesions possessing B-GO mimics provided a benign competitive set. A total of 22 B-GO features were analyzed for all structures: 21 color features and one size feature. Regarding segmentation, this study utilized a novel sector-based, non-recursive segmentation method to expand the masks applied to the B-GOs and mimicking structures. Results: Logistic regression analysis determined that blue chromaticity was the best feature for discriminating true B-GOs in BCC from benign, mimicking structures. Discrimination of malignant structures was optimal when the final B-GO border was approximated by a best-fit ellipse. Using this optimal configuration, logistic regression analysis discriminated the expanded and fitted malignant structures from similar benign structures with a classification rate as high as 96.5%. Conclusions: Experimental results show that color features allow accurate expansion and localization of structures from seed areas. Modeling these structures as ellipses allows high discrimination of B-GOs in BCCs from similar structures in benign images

    Fast and Accurate Border Detection in Dermoscopy Images Using Statistical Region Merging

    Get PDF
    Copyright 2007 Society of Photo-Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.As a result of advances in skin imaging technology and the development of suitable image processing techniques during the last decade, there has been a significant increase of interest in the computer-aided diagnosis of melanoma. Automated border detection is one of the most important steps in this procedure, since the accuracy of the subsequent steps crucially depends on it. In this paper, a fast and unsupervised approach to border detection in dermoscopy images of pigmented skin lesions based on the Statistical Region Merging algorithm is presented. The method is tested on a set of 90 dermoscopy images. The border detection error is quantified by a metric in which a set of dermatologist-determined borders is used as the ground-truth. The proposed method is compared to six state-of-the-art automated methods (optimized histogram thresholding, orientation-sensitive fuzzy c-means, gradient vector flow snakes, dermatologist-like tumor extraction algorithm, meanshift clustering, and the modified JSEG method) and borders determined by a second dermatologist. The results demonstrate that the presented method achieves both fast and accurate border detection in dermoscopy images.http://dx.doi.org/10.1117/12.70907

    Analysis of Globule Types in Malignant Melanoma

    Get PDF
    Objective: To identify and analyze subtypes of globules based on size, shape, network connectedness, pigmentation, and distribution to determine which globule types and globule distributions are most frequently associated with a diagnosis of malignant melanoma. Design: Retrospective case series of dermoscopy images with globules. Setting: Private dermatology practices. Participants: Patients in dermatology practices. Intervention: Observation only. Main Outcome Measure: Association of globule types with malignant melanoma. Results: The presence of large globules (odds ratio [OR], 5.25) and globules varying in size (4.72) or shape (5.37) had the highest ORs for malignant melanoma among all globule types and combinations studied. Classical globules (dark, discrete, convex, and 0.10-0.20 mm) had a higher risk (OR, 4.20) than irregularly shaped globules (dark, discrete, and not generally convex) (2.89). Globules connected to other structures were not significant in the diagnosis of malignant melanoma. Of the different configurations studied, asymmetric clusters have the highest risk (OR, 3.02). Conclusions: The presence of globules of varying size or shape seems to be more associated with a diagnosis of malignant melanoma than any other globule type or distribution in this study. Large globules are of particular importance in the diagnosis of malignant melanoma

    Validity and Reliability of Dermoscopic Criteria Used to Differentiate Nevi From Melanoma: A Web-Based International Dermoscopy Society Study.

    Get PDF
    IMPORTANCE: The comparative diagnostic performance of dermoscopic algorithms and their individual criteria are not well studied. OBJECTIVES: To analyze the discriminatory power and reliability of dermoscopic criteria used in melanoma detection and compare the diagnostic accuracy of existing algorithms. DESIGN, SETTING, AND PARTICIPANTS: This was a retrospective, observational study of 477 lesions (119 melanomas [24.9%] and 358 nevi [75.1%]), which were divided into 12 image sets that consisted of 39 or 40 images per set. A link on the International Dermoscopy Society website from January 1, 2011, through December 31, 2011, directed participants to the study website. Data analysis was performed from June 1, 2013, through May 31, 2015. Participants included physicians, residents, and medical students, and there were no specialty-type or experience-level restrictions. Participants were randomly assigned to evaluate 1 of the 12 image sets. MAIN OUTCOMES AND MEASURES: Associations with melanoma and intraclass correlation coefficients (ICCs) were evaluated for the presence of dermoscopic criteria. Diagnostic accuracy measures were estimated for the following algorithms: the ABCD rule, the Menzies method, the 7-point checklist, the 3-point checklist, chaos and clues, and CASH (color, architecture, symmetry, and homogeneity). RESULTS: A total of 240 participants registered, and 103 (42.9%) evaluated all images. The 110 participants (45.8%) who evaluated fewer than 20 lesions were excluded, resulting in data from 130 participants (54.2%), 121 (93.1%) of whom were regular dermoscopy users. Criteria associated with melanoma included marked architectural disorder (odds ratio [OR], 6.6; 95% CI, 5.6-7.8), pattern asymmetry (OR, 4.9; 95% CI, 4.1-5.8), nonorganized pattern (OR, 3.3; 95% CI, 2.9-3.7), border score of 6 (OR, 3.3; 95% CI, 2.5-4.3), and contour asymmetry (OR, 3.2; 95% CI, 2.7-3.7) (P < .001 for all). Most dermoscopic criteria had poor to fair interobserver agreement. Criteria that reached moderate levels of agreement included comma vessels (ICC, 0.44; 95% CI, 0.40-0.49), absence of vessels (ICC, 0.46; 95% CI, 0.42-0.51), dark brown color (ICC, 0.40; 95% CI, 0.35-0.44), and architectural disorder (ICC, 0.43; 95% CI, 0.39-0.48). The Menzies method had the highest sensitivity for melanoma diagnosis (95.1%) but the lowest specificity (24.8%) compared with any other method (P < .001). The ABCD rule had the highest specificity (59.4%). All methods had similar areas under the receiver operating characteristic curves. CONCLUSIONS AND RELEVANCE: Important dermoscopic criteria for melanoma recognition were revalidated by participants with varied experience. Six algorithms tested had similar but modest levels of diagnostic accuracy, and the interobserver agreement of most individual criteria was poor

    Validity and reliability of dermoscopic criteria used to differentiate nevi from melanoma aweb-based international dermoscopy society study

    Get PDF
    IMPORTANCE The comparative diagnostic performance of dermoscopic algorithms and their individual criteria are not well studied. OBJECTIVES To analyze the discriminatory power and reliability of dermoscopic criteria used in melanoma detection and compare the diagnostic accuracy of existing algorithms. DESIGN, SETTING, AND PARTICIPANTS Thiswas a retrospective, observational study of 477 lesions (119 melanomas [24.9%] and 358 nevi [75.1%]), which were divided into 12 image sets that consisted of 39 or 40 images per set. A link on the International Dermoscopy Society website from January 1, 2011, through December 31, 2011, directed participants to the study website. Data analysis was performed from June 1, 2013, through May 31, 2015. Participants included physicians, residents, and medical students, and there were no specialty-Type or experience-level restrictions. Participants were randomly assigned to evaluate 1 of the 12 image sets. MAIN OUTCOMES AND MEASURES Associations with melanoma and intraclass correlation coefficients (ICCs) were evaluated for the presence of dermoscopic criteria. Diagnostic accuracy measures were estimated for the following algorithms: The ABCD rule, the Menzies method, the 7-point checklist, the 3-point checklist, chaos and clues, and CASH (color, architecture, symmetry, and homogeneity). RESULTS A total of 240 participants registered, and 103 (42.9%) evaluated all images. The 110 participants (45.8%) who evaluated fewer than 20 lesions were excluded, resulting in data from 130 participants (54.2%), 121 (93.1%) of whom were regular dermoscopy users. Criteria associated with melanoma included marked architectural disorder (odds ratio [OR], 6.6; 95%CI, 5.6-7.8), pattern asymmetry (OR, 4.9; 95%CI, 4.1-5.8), nonorganized pattern (OR, 3.3; 95%CI, 2.9-3.7), border score of 6 (OR, 3.3; 95%CI, 2.5-4.3), and contour asymmetry (OR, 3.2; 95%CI, 2.7-3.7) (P &lt; .001 for all). Most dermoscopic criteria had poor to fair interobserver agreement. Criteria that reached moderate levels of agreement included comma vessels (ICC, 0.44; 95%CI, 0.40-0.49), absence of vessels (ICC, 0.46; 95%CI, 0.42-0.51), dark brown color (ICC, 0.40; 95%CI, 0.35-0.44), and architectural disorder (ICC, 0.43; 95%CI, 0.39-0.48). The Menziesmethod had the highest sensitivity for melanoma diagnosis (95.1%) but the lowest specificity (24.8%) compared with any other method (P &lt; .001). The ABCD rule had the highest specificity (59.4%). All methods had similar areas under the receiver operating characteristic curves. CONCLUSIONS AND RELEVANCE Important dermoscopic criteria for melanoma recognition were revalidated by participants with varied experience. Six algorithms tested had similar but modest levels of diagnostic accuracy, and the interobserver agreement of most individual criteria was poor

    Skin Cancer Diagnosis With Reflectance Confocal Microscopy: Reproducibility of Feature Recognition and Accuracy of Diagnosis

    Get PDF
    IMPORTANCE: Reflectance confocal microscopy (RCM) studies have been performed to identify criteria for diagnosis of skin neoplasms. However, RCM-based diagnosis is operator dependent. Hence, reproducibility of RCM criteria needs to be tested. OBJECTIVE: To test interobserver reproducibility of recognition of previously published RCM descriptors and accuracy of RCM-based skin cancer diagnosis. DESIGN, SETTING, AND PARTICIPANTS: Observational retrospective web-based study of a set of RCM images collected at a tertiary academic medical center. Nine dermatologists (6 of whom had ≥3 years of RCM experience) from 6 countries evaluated an RCM study set from 100 biopsy-proven lesions, including 55 melanocytic nevi, 20 melanomas, 15 basal cell carcinomas, 7 solar lentigines or seborrheic keratoses, and 3 actinic keratoses. Between June 15, 2010, and October 21, 2010, participanting dermatologists, blinded to histopathological diagnosis, evaluated 3 RCM mosaic images per lesion for the presence of predefined RCM descriptors. MAIN OUTCOMES AND MEASURES: The main outcome was identification of RCM descriptors with fair to good interrater agreement (κ statistic, ≥0.3) and independent correlation with malignant vs benign diagnosis on discriminant analysis. Additional measures included sensitivity and specificity for diagnosis of malignant vs benign for each evaluator, for majority diagnosis (rendered by ≥5 of 9 evaluators), and for experienced vs recent RCM users. RESULTS: Eight RCM descriptors showed fair to good reproducibility and were independently associated with a specific diagnosis. Of these, the presence of pagetoid cells, atypical cells at the dermal-epidermal junction, and irregular epidermal architecture were associated with melanoma. Aspecific junctional pattern, basaloid cords, and ulceration were associated with basal cell carcinomas. Ringed junctional pattern and dermal nests were associated with nevi. The mean sensitivity for the group of evaluators was 88.9% (range, 82.9%-100%), and the mean specificity was 79.3% (range, 69.2%-90.8%). Majority diagnosis showed sensitivity of 100% and specificity of 80.0%. Sensitivity was higher for experienced vs recent RCM users (91.0% vs. 84.8%), but specificity was similar (80.0% vs. 77.9%). CONCLUSIONS AND RELEVANCE: The study highlights key RCM diagnostic criteria for melanoma and basal cell carcinoma that are reproducibly recognized among RCM users. Diagnostic accuracy increases with experience. The higher accuracy of majority diagnosis suggests that there is intrinsically more diagnostic information in RCM images than is currently used by individual evaluators
    corecore