6 research outputs found

    Influence of the Integration of Geopolymer Wastes on the Characteristics of Binding Matrices Subjected to the Action of Temperature and Acid Environments

    No full text
    Recycling geopolymer waste, by reusing it as a raw material for manufacturing new geopolymer binding matrices, is an interesting asset that can add to the many technical, technological and environmental advantages of this family of materials in the construction field. This can promote them as promising alternatives to traditional materials, such as Portland cements, which are not so environmentally friendly. Recent studies have shown that the partial replacement of reactive aluminosilicates (metakaolin and fly ash) up to a mass rate of 50% by geopolymer waste does not significantly affect the compressive strength of the new product. In line with these findings, this paper investigates the effects of aggressive environments, i.e., high temperatures (up to 1000 °C) and acid attacks (pH = 2), on the characteristics of these new matrices. Different techniques were used to understand these evolutions: mineralogical analysis by X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TGA-DTA), mechanical characterization and scanning electron Microscopy (SEM) observations. The results are very satisfactory: in the exposure temperature range explored, the new matrices containing geopolymer waste suffered losses in compressive strength similar to those of the matrices without waste (considered as materials reference). On the other hand, the new matrices exhibited good chemical stability in acid media. These results confirm that the reuse of geopolymer waste is a promising recycling solution in the construction sector

    Towards an optimization of the formulation of geopolymers in the fresh state: Rheological approach

    No full text
    In this work, we are interested in describing the evolution of the rheological behavior of geopolymer materials since their elaboration until the start of their kinetics of setting. We considered the case where these materials are obtained from the dissolution of a quantity S of metakaolin in a quantity L of alkaline activation solution (sodium-based). In this context and for all the values of the structural identification parameters P = (% Na2O) and R3 = (L/S) in our experiments, it has been established that the rheological behavior is described by the viscoplastic Herschel-Bulkley model. In particular, we have been able to determine how rheological parameters of the model are affected by variations of P and / or R3. For the considered formulations, this analysis is of importance insofar as it was at the base of the identification of critical values of P and R3. Moreover, we verified that for these values, the setting time is maximum. This result is retained to define the optimized formulation of our materials

    Influence of the Integration of Geopolymer Wastes on the Characteristics of Binding Matrices Subjected to the Action of Temperature and Acid Environments

    No full text
    Recycling geopolymer waste, by reusing it as a raw material for manufacturing new geopolymer binding matrices, is an interesting asset that can add to the many technical, technological and environmental advantages of this family of materials in the construction field. This can promote them as promising alternatives to traditional materials, such as Portland cements, which are not so environmentally friendly. Recent studies have shown that the partial replacement of reactive aluminosilicates (metakaolin and fly ash) up to a mass rate of 50% by geopolymer waste does not significantly affect the compressive strength of the new product. In line with these findings, this paper investigates the effects of aggressive environments, i.e., high temperatures (up to 1000 °C) and acid attacks (pH = 2), on the characteristics of these new matrices. Different techniques were used to understand these evolutions: mineralogical analysis by X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TGA-DTA), mechanical characterization and scanning electron Microscopy (SEM) observations. The results are very satisfactory: in the exposure temperature range explored, the new matrices containing geopolymer waste suffered losses in compressive strength similar to those of the matrices without waste (considered as materials reference). On the other hand, the new matrices exhibited good chemical stability in acid media. These results confirm that the reuse of geopolymer waste is a promising recycling solution in the construction sector

    Preparation of Cement Clinker from Geopolymer-Based Wastes

    No full text
    In order to avoid potential environmental pollution from geopolymer-based material wastes, this work investigated the feasibility of using these materials as alternative raw materials in the preparation of cement clinker. The geopolymer binders and mortars were used as substitutes for natural mineral clays since they are rich in silica and alumina. Simulated geopolymer wastes were prepared by the activation of metakaolin or fly ash by an alkaline silicate solution. The cement-clinkers fired at 1450 °C for 1h were characterized by XRD, XRF, SEM-EDS, and a free lime (CaOf) content test. The anhydrous clinker mineral phases C3S (Ca3SiO5), C2S (Ca2SiO4), C3A (Ca3Al2O6), and C4AF (Ca4Al2Fe2O10) were well-crystallized in all investigated formulations. The free lime was lower than 1.3 wt% in all elaborated clinkers, which indicates a high degree of clinkerization. The results demonstrate that geopolymer binder and mortar materials are suitable substitutes for natural mineral clay incement clinker preparation

    Reusing Geopolymer Waste from Matrices Based on Metakaolin or Fly Ash for the Manufacture of New Binder Geopolymeric Matrices

    No full text
    International audienceThe increasing use of geopolymer materials in the construction and civil engineering sectors generates a large amount of non-biodegradable waste that will end up in landfills. It is therefore necessary to anticipate solutions for the proper management of this waste. In this work, new geopolymer materials were fabricated by partially replacing the reactive raw minerals (fly ash, FA, or metakaolin, MK) with used geopolymers (fully fly ash-based, FAref, or metakaolin-based, MKref), in order to develop a strategy to reuse geopolymer waste. Their workability and setting behavior were studied in the fresh state, and the geopolymerization process was investigated by calorimetry and by electrochemistry. Mechanical properties and the ability for coating mineral aggregates were assessed, and the resulting adhesion properties were analyzed using matrix/sand mortars. It appears that the new geopolymer materials as well as the mortars are endowed with good performances. The compressive strengths are above 50 MPa and therefore meet the requirements of different construction materials. This demonstrates the recyclability of geopolymer materials. Moreover, an analysis of the influence of the substitution of recycled geopolymers on the setting and on the mechanical performances of mortars makes it possible to propose a binder-recycled geopolymer interaction model for the formation of new binding matrices

    Reusing Geopolymer Waste from Matrices Based on Metakaolin or Fly Ash for the Manufacture of New Binder Geopolymeric Matrices

    No full text
    International audienceThe increasing use of geopolymer materials in the construction and civil engineering sectors generates a large amount of non-biodegradable waste that will end up in landfills. It is therefore necessary to anticipate solutions for the proper management of this waste. In this work, new geopolymer materials were fabricated by partially replacing the reactive raw minerals (fly ash, FA, or metakaolin, MK) with used geopolymers (fully fly ash-based, FAref, or metakaolin-based, MKref), in order to develop a strategy to reuse geopolymer waste. Their workability and setting behavior were studied in the fresh state, and the geopolymerization process was investigated by calorimetry and by electrochemistry. Mechanical properties and the ability for coating mineral aggregates were assessed, and the resulting adhesion properties were analyzed using matrix/sand mortars. It appears that the new geopolymer materials as well as the mortars are endowed with good performances. The compressive strengths are above 50 MPa and therefore meet the requirements of different construction materials. This demonstrates the recyclability of geopolymer materials. Moreover, an analysis of the influence of the substitution of recycled geopolymers on the setting and on the mechanical performances of mortars makes it possible to propose a binder-recycled geopolymer interaction model for the formation of new binding matrices
    corecore