9 research outputs found

    Functional characterization of mammalian and plant extracellular vesicles as systems for cancer treatment

    Get PDF
    In the last years, the field of nanomedicine and drug delivery has grown exponentially, providing new platforms to carry therapeutic agents into the target sites. Extracellular vesicles (EVs) are ready-to-use, biocompatible, and non-toxic nanoparticles that are revolutionizing the field of drug delivery. EVs are involved in cell-cell communication and mediate many physiological and pathological processes by transferring their bioactive cargo to target cells. Recently, nanovesicles from plants (PDNVs) have raised the interest of the scientific community due to their high yield and biocompatibility. This study aims to first evaluate whether PDNVs may be used as drug delivery systems. We isolated and characterized nanovesicles from tangerine juice (TNVs) that were comparable to mammalian EVs in size and morphology. TNVs carry the traditional EV marker HSP70 and, as demonstrated by metabolomic analysis, contain flavonoids, organic acids, and limonoids. TNVs were loaded with DDHD1-siRNA through electroporation, obtaining a loading efficiency of 13%. The DDHD1 gene encodes the phospholipase DDHD1 protein, which plays a vital role in lipid metabolism by hydrolyzing phospholipids into fatty acids and other lipophilic substances. Overexpression of DDHD1 has been linked to increased proliferation in colorectal cancer cells, suggesting its potential as a target for cancer therapies. We found that the DDHD1-siRNA TNV complexes were able to deliver DDHD1-siRNA to human colorectal cancer cells, inhibiting the target expression by about 60%. This study represents a proof of concept for the use of PDNVs as vehicles of RNA interference (RNAi) toward mammalian cells. More recently we tested whether the approach used with PDNVs can be applied also to mammalian vesicles, in particular to EVs purified from human embryonic kidney cells (HEK293T). We focused on loading onco-suppressor microRNAs, miR-146a and miR-199a, in EVs and to test the functionality of the complex on thyroid cancer cell lines. To increase the cell-specific targeting of the EV-miRNA complex, we decorated exosomes with Hyaluronic acid (HA), since cancer cells overexpress its receptor, CD44. Preliminary results suggest that the developed electroporation approach can be also used to load exogenous RNA in mammalian EVs; also, our findings suggest that the decoration of EV with HA may enhance the delivery efficiency of miRNAs to target cells

    Exploiting the Opportunity to Use Plant-Derived Nanoparticles as Delivery Vehicles

    Get PDF
    The scientific community has become increasingly interested in plant-derived nanoparticles (PDNPs) over the past ten years. Given that they possess all the benefits of a drug carrier, including non-toxicity, low immunogenicity, and a lipid bilayer that protects its content, PDNPs are a viable model for the design of innovative delivery systems. In this review, a summary of the prerequisites for mammalian extracellular vesicles to serve as delivery vehicles will be given. After that, we will concentrate on providing a thorough overview of the studies investigating the interactions of plant-derived nanoparticles with mammalian systems as well as the loading strategies for encapsulating therapeutic molecules. Finally, the existing challenges in establishing PDNPs as reliable biological delivery systems will be emphasized.</p

    Industrial-produced lemon nanovesicles ameliorate experimental colitis-associated damages in rats via the activation of anti-inflammatory and antioxidant responses and microbiota modification

    Get PDF
    Plant-derived nanovesicles (PDNVs) have recently emerged as natural delivery systems of biofunctional compounds toward mammalian cells. Considering their already described composition, anti-inflammatory properties, stability, and low toxicity, PDNVs offer a promising path for developing new preventive strategies for several inflammatory diseases, among which the inflammatory bowel disease (IBD). In this study, we explore the protective effects of industrially produced lemon vesicles (iLNVs) in a rat model of IBD. Characterization of iLNVs reveals the presence of small particles less than 200 nm in size and a profile of bioactive compounds enriched in flavonoids and organic acids with known beneficial properties. In vitro studies on human macrophages confirm the safety and anti-inflammatory effects of iLNVs, as evidenced by the reduced expression of pro-inflammatory cytokines and increased levels of anti-inflammatory markers. As evidenced by in vivo experiments, pre-treatment with iLNVs significantly alleviates symptoms and histological features in 2,4 dinitrobenzensulfuric acid (DNBS)-induced colitis in rats. Molecular pathway analysis reveals modulation of NF-ÎşB and Nrf2, indicating anti-inflammatory and antioxidant effects. Finally, iLNVs affects gut microbiota composition, improving the consistent colitis-related alterations. Overall, we demonstrated the protective role of industrially produced lemon nanovesicles against colitis and emphasized their potential in managing IBD through multifaceted mechanisms

    Proof-of-Concept Study on the Use of Tangerine-Derived Nanovesicles as siRNA Delivery Vehicles toward Colorectal Cancer Cell Line SW480

    Get PDF
    In the last years, the field of nanomedicine and drug delivery has grown exponentially, providing new platforms to carry therapeutic agents into the target sites. Extracellular vesicles (EVs) are ready-to-use, biocompatible, and non-toxic nanoparticles that are revolutionizing the field of drug delivery. EVs are involved in cell-cell communication and mediate many physiological and pathological processes by transferring their bioactive cargo to target cells. Recently, nanovesicles from plants (PDNVs) are raising the interest of the scientific community due to their high yield and biocompatibility. This study aims to evaluate whether PDNVs may be used as drug delivery systems. We isolated and characterized nanovesicles from tangerine juice (TNVs) that were comparable to mammalian EVs in size and morphology. TNVs carry the traditional EV marker HSP70 and, as demonstrated by metabolomic analysis, contain flavonoids, organic acids, and limonoids. TNVs were loaded with DDHD1-siRNA through electroporation, obtaining a loading efficiency of 13%. We found that the DDHD1-siRNA complex TNVs were able to deliver DDHD1-siRNA to human colorectal cancer cells, inhibiting the target expression by about 60%. This study represents a proof of concept for the use of PDNVs as vehicles of RNA interference (RNAi) toward mammalian cells

    Protective effects of lemon nanovesicles: evidence of the Nrf2/HO-1 pathway contribution from in vitro hepatocytes and in vivo high-fat diet-fed rats

    Get PDF
    The cross-talk between plant-derived nanovesicles (PDNVs) and mammalian cells has been explored by several investigations, underlining the capability of these natural nanovesicles to regulate several molecular pathways. Additionally, PDNVs possess biological proprieties that make them applicable against pathological conditions, such as hepatic diseases. In this study we explored the antioxidant properties of lemon-derived nanovesicles, isolated at laboratory (LNVs) and industrial scale (iLNVs) in human healthy hepatocytes (THLE-2) and in metabolic syndrome induced by a high-fat diet (HFD) in the rat. Our findings demonstrate that in THLE-2 cells, LNVs and iLNVs decrease ROS production and upregulate the expression of antioxidant mediators, Nrf2 and HO-1. Furthermore, the in vivo assessment reveals that the oral administration of iLNVs improves glucose tolerance and lipid dysmetabolism, ameliorates biometric parameters and systemic redox homeostasis, and upregulates Nrf2/HO-1 signaling in HFD rat liver. Consequently, we believe LNVs/iLNVs might be a promising approach for managing hepatic and dysmetabolic disorders

    Plant-RNA in Extracellular Vesicles: The Secret of Cross-Kingdom Communication

    No full text
    The release of extracellular vesicles (EVs) is a common language, used by living organisms from different kingdoms as a means of communication between them. Extracellular vesicles are lipoproteic particles that contain many biomolecules, such as proteins, nucleic acids, and lipids. The primary role of EVs is to convey information to the recipient cells, affecting their function. Plant-derived extracellular vesicles (PDEVs) can be isolated from several plant species, and the study of their biological properties is becoming an essential starting point to study cross-kingdom communication, especially between plants and mammalians. Furthermore, the presence of microRNAs (miRNAs) in PDEVs represents an interesting aspect for understanding how PDEVs can target the mammalian genes involved in pathological conditions such as cancer, inflammation, and oxidative stress. In particular, this review focuses on the history of PDEVs, from their discovery, to purification from various matrices, and on the functional role of PDEV-RNAs in cross-kingdom interactions. It is worth noting that miRNAs packaged in PDEVs can be key modulators of human gene expression, representing potential therapeutic agents

    Industrial-produced lemon nanovesicles ameliorate experimental colitis-associated damages in rats via the activation of anti-inflammatory and antioxidant responses and microbiota modification

    No full text
    Plant-derived nanovesicles (PDNVs) have recently emerged as natural delivery systems of biofunctional compounds toward mammalian cells. Considering their already described composition, anti-inflammatory properties, stability, and low toxicity, PDNVs offer a promising path for developing new preventive strategies for several inflammatory diseases, among which the inflammatory bowel disease (IBD). In this study, we explore the protective effects of industrially produced lemon vesicles (iLNVs) in a rat model of IBD. Characterization of iLNVs reveals the presence of small particles less than 200 nm in size and a profile of bioactive compounds enriched in flavonoids and organic acids with known beneficial properties. In vitro studies on human macrophages confirm the safety and anti-inflammatory effects of iLNVs, as evidenced by the reduced expression of pro-inflammatory cytokines and increased levels of anti-inflammatory markers. As evidenced by in vivo experiments, pre-treatment with iLNVs significantly alleviates symptoms and histological features in 2,4 dinitrobenzensulfuric acid (DNBS)-induced colitis in rats. Molecular pathway analysis reveals modulation of NF-ÎşB and Nrf2, indicating anti-inflammatory and antioxidant effects. Finally, iLNVs affects gut microbiota composition, improving the consistent colitis-related alterations. Overall, we demonstrated the protective role of industrially produced lemon nanovesicles against colitis and emphasized their potential in managing IBD through multifaceted mechanisms.European Union's NextGenerationEU-fondi MUR D.M. (737/2021)EUROSTART, UNIPA, PON "Ricerca e Innovazione" , "Mobilit a dei Ricercatori" of "Attraction and International Mobility" (AIM)6.9 Q1 JCR 20221.493 Q1 SJR 2023No data IDR 2022UE

    Lemon-derived nanovesicles achieve antioxidant and anti-inflammatory effects activating the AhR/Nrf2 signaling pathway

    No full text
    Summary: In the last years, extracellular vesicles (EVs) from different plant matrices have been isolated and gained the interest of the scientific community for their intriguing biological properties. In this study, we isolated and characterized nanovesicles from lemon juice (LNVs) and evaluated their antioxidant effects. We tested LNV antioxidant activity using human dermal fibroblasts that were pre-treated with LNVs for 24 h and then stimulated with hydrogen peroxide (H2O2) and UVB irradiation. We found that LNV pre-treatment reduced ROS levels in fibroblasts stimulated with H2O2 and UVB. This reduction was associated with the activation of the AhR/Nrf2 signaling pathway, whose protein expression and nuclear localization was increased in fibroblasts treated with LNVs. By using zebrafish embryos as in vivo model, we confirmed the antioxidant effects of LNVs. We found that LNVs reduced ROS levels and neutrophil migration in zebrafish embryos stimulated with LPS

    Anti-inflammatory properties of lemon-derived extracellular vesicles are achieved through the inhibition of ERK/NF-ÎşB signalling pathways

    No full text
    Chronic inflammation is associated with the occurrence of several diseases. However, the side effects of anti-inflammatory drugs prompt the identification of new therapeutic strategies. Plant-derived extracellular vesicles (PDEVs) are gaining increasing interest in the scientific community for their biological properties. We isolated PDEVs from the juice of Citrus limon L. (LEVs) and characterized their flavonoid, limonoid and lipid contents through reversed-phase high-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (RP-HPLC-ESI-Q-TOF-MS). To investigate whether LEVs have a protective role on the inflammatory process, murine and primary human macrophages were pre-treated with LEVs for 24 h and then were stimulated with lipopolysaccharide (LPS). We found that pre-treatment with LEVs decreased gene and protein expression of pro-inflammatory cytokines, such as IL-6, IL1-β and TNF-α, and reduced the nuclear translocation and phosphorylation of NF-κB in LPS-stimulated murine macrophages. The inhibition of NF-κB activation was associated with the reduction in ERK1-2 phosphorylation. Furthermore, the ability of LEVs to decrease pro-inflammatory cytokines and increase anti-inflammatory molecules was confirmed ex vivo in human primary T lymphocytes. In conclusion, we demonstrated that LEVs exert anti-inflammatory effects both in vitro and ex vivo by inhibiting the ERK1-2/NF-κB signalling pathway
    corecore