233 research outputs found

    GRAVITY: The AO-Assisted, Two-Object Beam-Combiner Instrument

    Full text link
    We present the proposal for the infrared adaptive optics (AO) assisted, two-object, high-throughput, multiple-beam-combiner GRAVITY for the VLTI. This instrument will be optimized for phase-referenced interferometric imaging and narrow-angle astrometry of faint, red objects. Following the scientific drivers, we analyze the VLTI infrastructure, and subsequently derive the requirements and concept for the optimum instrument. The analysis can be summarized with the need for highest sensitivity, phase referenced imaging and astrometry of two objects in the VLTI beam, and infrared wavefront-sensing. Consequently our proposed instrument allows the observations of faint, red objects with its internal infrared wavefront sensor, pushes the optical throughput by restricting observations to K-band at low and medium spectral resolution, and is fully enclosed in a cryostat for optimum background suppression and stability. Our instrument will thus increase the sensitivity of the VLTI significantly beyond the present capabilities. With its two fibers per telescope beam, GRAVITY will not only allow the simultaneous observations of two objects, but will also push the astrometric accuracy for UTs to 10 micro-arcsec, and provide simultaneous astrometry for up to six baselines.Comment: 12 pages, to be published in the Proceedings of the ESO Workshop on "The Power of Optical/IR Interferometry: Recent Scientific Results and 2nd Generation VLTI Instrumentation", eds. F. Paresce, A. Richichi, A. Chelli and F. Delplancke, held in Garching, Germany, 4-8 April 200

    ALFA: First Operational Experience of the MPE/MPIA Laser Guide Star System for Adaptive Optics

    Get PDF
    The sodium laser guide star adaptive optics system ALFA has been constructed at the Calar Alto 3.5-m telescope. Following the first detection of the laser beacon on the wavefront sensor in 1997 the system is now being optimized for best performance. In this contribution we discuss the current status of the launch beam and the planned improvements and upgrades. We report on the performance level achieved when it is used with the adaptive optics system, and relate various aspects of our experience during operation of the system. We have begun to produce scientific results and mention two of these.Comment: 9 pages, 6 figures, LaTeX (spie.sty). SPIE conf proc 3353, Adaptive Optical System Technologies, March 199

    Reaching micro-arcsecond astrometry with long baseline optical interferometry; application to the GRAVITY instrument

    Full text link
    A basic principle of long baseline interferometry is that an optical path difference (OPD) directly translates into an astrometric measurement. In the simplest case, the OPD is equal to the scalar product between the vector linking the two telescopes and the normalized vector pointing toward the star. However, a too simple interpretation of this scalar product leads to seemingly conflicting results, called here "the baseline paradox". For micro-arcsecond accuracy astrometry, we have to model in full the metrology measurement. It involves a complex system subject to many optical effects: from pure baseline errors to static, quasi-static and high order optical aberrations. The goal of this paper is to present the strategy used by the "General Relativity Analysis via VLT InTerferometrY" instrument (GRAVITY) to minimize the biases introduced by these defects. It is possible to give an analytical formula on how the baselines and tip-tilt errors affect the astrometric measurement. This formula depends on the limit-points of three type of baselines: the wide-angle baseline, the narrow-angle baseline, and the imaging baseline. We also, numerically, include non-common path higher-order aberrations, whose amplitude were measured during technical time at the Very Large Telescope Interferometer. We end by simulating the influence of high-order common-path aberrations due to atmospheric residuals calculated from a Monte-Carlo simulation tool for Adaptive optics systems. The result of this work is an error budget of the biases caused by the multiple optical imperfections, including optical dispersion. We show that the beam stabilization through both focal and pupil tracking is crucial to the GRAVITY system. Assuming the instrument pupil is stabilized at a 4 cm level on M1, and a field tracking below 0.2λ/D\lambda/D, we show that GRAVITY will be able to reach its objective of 10μ\muas accuracy.Comment: 14 pages. Accepted by A&

    The Fringe Detection Laser Metrology for the GRAVITY Interferometer at the VLTI

    Full text link
    Interferometric measurements of optical path length differences of stars over large baselines can deliver extremely accurate astrometric data. The interferometer GRAVITY will simultaneously measure two objects in the field of view of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO) and determine their angular separation to a precision of 10 micro arcseconds in only 5 minutes. To perform the astrometric measurement with such a high accuracy, the differential path length through the VLTI and the instrument has to be measured (and tracked since Earth's rotation will permanently change it) by a laser metrology to an even higher level of accuracy (corresponding to 1 nm in 3 minutes). Usually, heterodyne differential path techniques are used for nanometer precision measurements, but with these methods it is difficult to track the full beam size and to follow the light path up to the primary mirror of the telescope. Here, we present the preliminary design of a differential path metrology system, developed within the GRAVITY project. It measures the instrumental differential path over the full pupil size and up to the entrance pupil location. The differential phase is measured by detecting the laser fringe pattern both on the telescopes' secondary mirrors as well as after reflection at the primary mirror. Based on our proposed design we evaluate the phase measurement accuracy based on a full budget of possible statistical and systematic errors. We show that this metrology design fulfills the high precision requirement of GRAVITY.Comment: Proc. SPIE in pres

    Atmospheric Turbulence Compensation with Laser Phase Shifting Interferometry

    Full text link
    Laser guide stars with adaptive optics allow astronomical image correction in the absence of a natural guide star. Single guide star systems with a star created in the earth's sodium layer can be used to correct the wavefront in the near infrared spectral regime for 8-m class telescopes. For possible future telescopes of larger sizes, or for correction at shorter wavelengths, the use of a single guide star is ultimately limited by focal anisoplanatism that arises from the finite height of the guide star. To overcome this limitation we propose to overlap coherently pulsed laser beams that are expanded over the full aperture of the telescope, traveling upwards along the same path which light from the astronomical object travels downwards. Imaging the scattered light from the resultant interference pattern with a camera gated to a certain height above the telescope, and using phase shifting interferometry we have found a method to retrieve the local wavefront gradients. By sensing the backscattered light from two different heights, one can fully remove the cone effect, which can otherwise be a serious handicap to the use of laser guide stars at shorter wavelengths or on larger telescopes. Using two laser beams multiconjugate correction is possible, resulting in larger corrected fields. With a proper choice of laser, wavefront correction could be expanded to the visible regime and, due to the lack of a cone effect, the method is applicable to any size of telescope. Finally the position of the laser spot could be imaged from the side of the main telescope against a bright background star to retrieve tip-tilt information, which would greatly improve the sky coverage of the system.Comment: 11 pages, 10 figure

    GRAVITY: The adaptive optics assisted, two object beam combiner for the VLTI

    Get PDF
    We present the adaptive optics assisted, near-infrared VLTI instrument - GRAVITY - for precision narrow-angle astrometry and interferometric phase referenced imaging of faint objects. Precision astrometry and phase-referenced interferometric imaging will realize the most advanced vision of optical/infrared interferometry with the VLT. Our most ambitious science goal is to study motions within a few times the event horizon size of the Galactic Center massive black hole and to test General Relativity in its strong field limit. We define the science reference cases for GRAVITY and derive the top level requirements for GRAVITY. The installation of the instrument at the VLTI is planned for 2012.Comment: 9 pages, Advances in Stellar Interferometry, SPIE Proc. Vol. 6268, 626811 (2006
    • …
    corecore