3,928 research outputs found

    How to not induce SNAs: The insufficiency of directional force.

    Get PDF
    People respond faster to smaller numbers in their left space and to larger numbers in their right space. Here we argue that movements in space contribute to the formation of spatial-numerical associations (SNAs). We studied the impact of continuous isometric forces along the horizontal or vertical cardinal axes on SNAs while participants performed random number production and arithmetic verification tasks. Our results suggest that such isometric directional force do not suffice to induce SNAs. [Abstract copyright: Copyright: © 2023 Michirev et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

    Transcriptome Changes Induced by Epstein-Barr Virus LMP1 and LMP2A in Transgenic Lymphocytes and Lymphoma

    Get PDF
    ABSTRACTLatent membrane protein 1 (LMP1) and LMP2A affect cell growth in both epithelial cells and lymphocytes. In this study, the effects on cellular gene expression were determined by microarray analysis of transgenic mice expressing LMP1, LMP2A, or both using the immunoglobulin heavy chain promoter and enhancer. Large differential changes were detected, indicating that LMP1 and LMP2A can both potently affect host gene transcription, inducing distinct transcriptional profiles. Seventypercent of the changes detected in LMP1/2A doubly transgenic lymphocytes were also modulated by LMP1 or LMP2A alone. These common and unique expression changes indicate that the combined effects of LMP1 and LMP2A may be additive, synergistic, or inhibitory. Using significant pathway analysis, the expression changes detected in LMP1, LMP2A, and LMP1/2A transgenic B lymphocytes were predicted to commonly target cancer and inflammatory pathways. Additionally, using the correlation coefficient to calculate the regulation of known c-Rel and Stat3 transcriptional targets, both were found to be enhanced in LMP1 lymphocytes and lymphomas, and a selection of Stat3 targets was further evaluated and confirmed using quantitative reverse transcription-PCR (RT-PCR). Analyses of the effects on cell growth and viability revealed that LMP2A transgenic lymphocytes had the greatest enhanced viability in vitro; however, doubly transgenic lymphocytes (LMP1/2A) did not have enhanced survival in culture and these mice were similar to negative littermates. These findings indicate that the combined expression of LMP1 and LMP2A has potentially different biological outcomes than when the two proteins are expressed individually.IMPORTANCEThe Epstein-Barr virus proteins latent membrane protein 1 (LMP1) and LMP2A have potent effects on cell growth. In transgenic mice that express these proteins in B lymphocytes, the cell growth and survival properties are also affected. LMP1 transgenic mice have increased development of lymphoma, and the LMP1 lymphocytes have increased viability in culture. LMP2A transgenic lymphocytes have altered B cell development and enhanced survival. In this study, analysis of the cellular gene expression changes in transgenic LMP1 and LMP2A lymphocytes and LMP1 lymphomas revealed that both transgenes individually and in combination affected pathways important for the development of cancer and inflammation. Importantly, the combined expression of the two proteins had unique effects on cellular expression and cell viability. This is the first study to look at the combined effects of LMP1 and LMP2A on global changes in host gene expression

    Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback

    Get PDF
    We propose a simple optomechanical model in which a mechanical oscillator quadrature could be "cooled" well below its equilibrium temperature by applying a suitable feedback to drive the orthogonal quadrature by means of the homodyne current of the radiation field used to probe its position.Comment: 9 pages, RevTeX, Figures available from authors, to appear in Phys. Rev. Let

    Iterated Binomial Sums and their Associated Iterated Integrals

    Full text link
    We consider finite iterated generalized harmonic sums weighted by the binomial (2kk)\binom{2k}{k} in numerators and denominators. A large class of these functions emerges in the calculation of massive Feynman diagrams with local operator insertions starting at 3-loop order in the coupling constant and extends the classes of the nested harmonic, generalized harmonic and cyclotomic sums. The binomially weighted sums are associated by the Mellin transform to iterated integrals over square-root valued alphabets. The values of the sums for NN \rightarrow \infty and the iterated integrals at x=1x=1 lead to new constants, extending the set of special numbers given by the multiple zeta values, the cyclotomic zeta values and special constants which emerge in the limit NN \rightarrow \infty of generalized harmonic sums. We develop algorithms to obtain the Mellin representations of these sums in a systematic way. They are of importance for the derivation of the asymptotic expansion of these sums and their analytic continuation to NCN \in \mathbb{C}. The associated convolution relations are derived for real parameters and can therefore be used in a wider context, as e.g. for multi-scale processes. We also derive algorithms to transform iterated integrals over root-valued alphabets into binomial sums. Using generating functions we study a few aspects of infinite (inverse) binomial sums.Comment: 62 pages Latex, 1 style fil

    Guiding neutral atoms around curves with lithographically patterned current-carrying wires

    Get PDF
    Laser-cooled neutral atoms from a low-velocity atomic source are guided via a magnetic field generated between two parallel wires on a glass substrate. The atoms bend around three curves, each with a 15-cm radius of curvature, while traveling along a 10-cm-long track. A maximum flux of 2*10^6 atoms/sec is achieved with a current density of 3*10^4 A/cm^2 in the 100x100-micrometer-cross-section wires. The kinetic energy of the guided atoms in one transverse dimension is measured to be 42 microKelvin.Comment: 9 page

    Lorenz-like systems and classical dynamical equations with memory forcing: a new point of view for singling out the origin of chaos

    Full text link
    A novel view for the emergence of chaos in Lorenz-like systems is presented. For such purpose, the Lorenz problem is reformulated in a classical mechanical form and it turns out to be equivalent to the problem of a damped and forced one dimensional motion of a particle in a two-well potential, with a forcing term depending on the ``memory'' of the particle past motion. The dynamics of the original Lorenz system in the new particle phase space can then be rewritten in terms of an one-dimensional first-exit-time problem. The emergence of chaos turns out to be due to the discontinuous solutions of the transcendental equation ruling the time for the particle to cross the intermediate potential wall. The whole problem is tackled analytically deriving a piecewise linearized Lorenz-like system which preserves all the essential properties of the original model.Comment: 48 pages, 25 figure

    Variational calculations for the hydrogen-antihydrogen system with a mass-scaled Born-Oppenheimer potential

    Full text link
    The problem of proton-antiproton motion in the H{\rm H}--Hˉ{\rm \bar{H}} system is investigated by means of the variational method. We introduce a modified nuclear interaction through mass-scaling of the Born-Oppenheimer potential. This improved treatment of the interaction includes the nondivergent part of the otherwise divergent adiabatic correction and shows the correct threshold behavior. Using this potential we calculate the vibrational energy levels with angular momentum 0 and 1 and the corresponding nuclear wave functions, as well as the S-wave scattering length. We obtain a full set of all bound states together with a large number of discretized continuum states that might be utilized in variational four-body calculations. The results of our calculations gives an indication of resonance states in the hydrogen-antihydrogen system

    Iso-osmotic regulation of nitrate accumulation in lettuce (Lactuca sativa L.)

    Get PDF
    Concerns about possible health hazards arising from human consumption of lettuce and other edible vegetable crops with high concentrations of nitrate have generated demands for a greater understanding of processes involved in its uptake and accumulation in order to devise more sustainable strategies for its control. This paper evaluates a proposed iso-osmotic mechanism for the regulation of nitrate accumulation in lettuce (Lactuca sativa L.) heads. This mechanism assumes that changes in the concentrations of nitrate and all other endogenous osmotica (including anions, cations and neutral solutes) are continually adjusted in tandem to minimise differences in osmotic potential of the shoot sap during growth, with these changes occurring independently of any variations in external water potential. The hypothesis was tested using data from six new experiments, each with a single unique treatment comprising a separate combination of light intensity, N source (nitrate with or without ammonium) and nitrate concentration carried out hydroponically in a glasshouse using a butterhead lettuce variety. Repeat measurements of plant weights and estimates of all of the main soluble constituents (nitrate, potassium, calcium, magnesium, organic anions, chloride, phosphate, sulphate and soluble carbohydrates) in the shoot sap were made at intervals from about 2 weeks after transplanting until commercial maturity, and the data used to calculate changes in average osmotic potential in the shoot. Results showed that nitrate concentrations in the sap increased when average light levels were reduced by between 30 and 49 % and (to a lesser extent) when nitrate was supplied at a supra-optimal concentration, and declined with partial replacement of nitrate by ammonium in the external nutrient supply. The associated changes in the proportions of other endogenous osmotica, in combination with the adjustment of shoot water content, maintained the total solute concentrations in shoot sap approximately constant and minimised differences in osmotic potential between treatments at each sampling date. There was, however, a gradual increase in osmotic potential (ie a decline in total solute concentration) over time largely caused by increases in shoot water content associated with the physiological and morphological development of the plants. Regression analysis using normalised data (to correct for these time trends) showed that the results were consistent with a 1:1 exchange between the concentrations of nitrate and the sum of all other endogenous osmotica throughout growth, providing evidence that an iso-osmotic mechanism (incorporating both concentration and volume regulation) was involved in controlling nitrate concentrations in the shoot
    corecore