727 research outputs found

    Stability of postmortem methemoglobin: Artifactual changes caused by storage conditions.

    Get PDF
    Hemoglobin is the protein in red blood cells that carries and distributes oxygen to the body. Methemoglobinemia is a blood disorder in which an abnormal amount of methemoglobin (MetHb), a form of hemoglobin (Hb), is produced from either inadequate MetHb reductase activity or too much MetHb production or by exposure to oxidizing agents. This could lead to anoxia and death if it is not treated. However, this parameter has not been investigated as a valid post-mortem indicator because random MetHb levels have been observed in various studies: MetHb increases can be observed due to autoxidation during storage, and MetHb decreases can be observed due to MetHb reductase or microbial activity in post-mortem samples. MetHb variations can also come from the blood state and can interfere in the optical measurements of MetHb. We have studied the post-mortem MetHb concentrations according to various storage conditions. Based on our results, both the post-mortem delay and the delay before analysis should be reduced whenever possible to avoid changes in MetHb. If the analysis is delayed for a short period of time (two weeks), the blood sample taken at autopsy should not be frozen but collected in EDTA preservative and stored under refrigeration (4-6°C) until analysis. If the analysis is delayed for a longer period (more than two weeks), the blood sample should be frozen with cryoprotectant at -80°C or -196°C

    Ultra-low pressure sensor for neonatal resuscitator

    Get PDF
    AbstractA Venturi-type flow sensor has been designed and fabricated for neonatal respiratory assistance to control airway pressure and tidal volume. As the low flow range and sensing principle require the measurement of correspondingly very low pressures, a very responsive sensor, based on a polymer membrane acting onto a piezoresistive cantilever force sensor based on low-temperature co-fired ceramic (LTCC), was developed. This paper details the 3D modelling, manufacture, assembly and characterisation of the sensor. Compared to expensive and fragile MEMS-based devices, this sensor, based on LTCC, thick-film technology and polymer parts, provides an accurate and robust, yet low-cost alternative

    Matrix permanent and quantum entanglement of permutation invariant states

    Full text link
    We point out that a geometric measure of quantum entanglement is related to the matrix permanent when restricted to permutation invariant states. This connection allows us to interpret the permanent as an angle between vectors. By employing a recently introduced permanent inequality by Carlen, Loss and Lieb, we can prove explicit formulas of the geometric measure for permutation invariant basis states in a simple way.Comment: 10 page

    Temperatures experienced by fresh-cut leafy greens during retail storage and display

    Get PDF
    There has been limited published work in the United States on temperature profiling of fresh-cut, bagged leafy greens during their transport, retail storage, and retail display. This study utilized temperature monitors placed in backrooms and display cases at nine supermarkets located in southern California: the Central Coast (Santa Barbara to Los Osos), Greater Los Angeles (Burbank area), and Greater Palm Desert. Sensors were installed midway along each 8-foot display case section containing fresh-cut leafy greens. Monitors were placed at the front and back of shelves and in the lower bin. In storage rooms, sensors were placed 4 feet from the floor in each corner. High and low temperature abuse occurred in retail display cases, with slightly more than 40% of the sensors indicating temperatures \u3e7.22°C, and 17% of the sensors indicating temperatures \u3c-0.17°C, for at least 5% of the time. Temperatures in storage rooms were rarely too low, but were often too high: slightly more than 58% of the sensors indicated temperatures \u3e7.22°C more than 5% of the time, and five sensors measured continuous temperatures \u3e7.22°C for nearly a year. Overall, most temperature abuse of pre-cut leafy greens at the retail level occurred during backroom storage. This study should be expanded to include major grocery chains in cities across the United States in order to verify these results

    Interpretable Anomaly Detection in Echocardiograms with Dynamic Variational Trajectory Models

    Full text link
    We propose a novel anomaly detection method for echocardiogram videos. The introduced method takes advantage of the periodic nature of the heart cycle to learn three variants of a variational latent trajectory model (TVAE). While the first two variants (TVAE-C and TVAE-R) model strict periodic movements of the heart, the third (TVAE-S) is more general and allows shifts in the spatial representation throughout the video. All models are trained on the healthy samples of a novel in-house dataset of infant echocardiogram videos consisting of multiple chamber views to learn a normative prior of the healthy population. During inference, maximum a posteriori (MAP) based anomaly detection is performed to detect out-of-distribution samples in our dataset. The proposed method reliably identifies severe congenital heart defects, such as Ebstein's Anomaly or Shone-complex. Moreover, it achieves superior performance over MAP-based anomaly detection with standard variational autoencoders when detecting pulmonary hypertension and right ventricular dilation. Finally, we demonstrate that the proposed method enables interpretable explanations of its output through heatmaps highlighting the regions corresponding to anomalous heart structures.Comment: accepted at IMLH workshop ICML 202

    Families with infants: a general approach to solve hard partition problems

    Full text link
    We introduce a general approach for solving partition problems where the goal is to represent a given set as a union (either disjoint or not) of subsets satisfying certain properties. Many NP-hard problems can be naturally stated as such partition problems. We show that if one can find a large enough system of so-called families with infants for a given problem, then this problem can be solved faster than by a straightforward algorithm. We use this approach to improve known bounds for several NP-hard problems as well as to simplify the proofs of several known results. For the chromatic number problem we present an algorithm with O∗((2−Δ(d))n)O^*((2-\varepsilon(d))^n) time and exponential space for graphs of average degree dd. This improves the algorithm by Bj\"{o}rklund et al. [Theory Comput. Syst. 2010] that works for graphs of bounded maximum (as opposed to average) degree and closes an open problem stated by Cygan and Pilipczuk [ICALP 2013]. For the traveling salesman problem we give an algorithm working in O∗((2−Δ(d))n)O^*((2-\varepsilon(d))^n) time and polynomial space for graphs of average degree dd. The previously known results of this kind is a polyspace algorithm by Bj\"{o}rklund et al. [ICALP 2008] for graphs of bounded maximum degree and an exponential space algorithm for bounded average degree by Cygan and Pilipczuk [ICALP 2013]. For counting perfect matching in graphs of average degree~dd we present an algorithm with running time O∗((2−Δ(d))n/2)O^*((2-\varepsilon(d))^{n/2}) and polynomial space. Recent algorithms of this kind due to Cygan, Pilipczuk [ICALP 2013] and Izumi, Wadayama [FOCS 2012] (for bipartite graphs only) use exponential space.Comment: 18 pages, a revised version of this paper is available at http://arxiv.org/abs/1410.220

    Tunneling-percolation origin of nonuniversality: theory and experiments

    Get PDF
    A vast class of disordered conducting-insulating compounds close to the percolation threshold is characterized by nonuniversal values of transport critical exponent t, in disagreement with the standard theory of percolation which predicts t = 2.0 for all three dimensional systems. Various models have been proposed in order to explain the origin of such universality breakdown. Among them, the tunneling-percolation model calls into play tunneling processes between conducting particles which, under some general circumstances, could lead to transport exponents dependent of the mean tunneling distance a. The validity of such theory could be tested by changing the parameter a by means of an applied mechanical strain. We have applied this idea to universal and nonuniversal RuO2-glass composites. We show that when t > 2 the measured piezoresistive response \Gamma, i. e., the relative change of resistivity under applied strain, diverges logarithmically at the percolation threshold, while for t = 2, \Gamma does not show an appreciable dependence upon the RuO2 volume fraction. These results are consistent with a mean tunneling dependence of the nonuniversal transport exponent as predicted by the tunneling-percolation model. The experimental results are compared with analytical and numerical calculations on a random-resistor network model of tunneling-percolation.Comment: 13 pages, 12 figure

    Longitudinal and transversal piezoresistive response of granular metals

    Full text link
    In this paper, we study the piezoresistive response and its anisotropy for a bond percolation model of granular metals. Both effective medium results and numerical Monte Carlo calculations of finite simple cubic networks show that the piezoresistive anisotropy is a strongly dependent function of bond probability p and of bond conductance distribution width \Delta g. We find that piezoresistive anisotropy is strongly suppressed as p is reduced and/or \Delta g is enhanced and that it vanishes at the percolation thresold p=p_c. We argue that a measurement of the piezoresistive anisotropy could be a sensitive tool to estimate critical metallic concentrations in real granular metals.Comment: 14 pages, 7 eps figure
    • 

    corecore