55 research outputs found

    Inhibition of prostate cancer cell growth by human secreted PDZ domain-containing protein 2, a potential autocrine prostate tumor suppressor

    Get PDF
    A possible role of the PDZ domain-containing protein 2 (PDZD2) in prostate tumorigenesis has been suggested. Besides, PDZD2 is posttranslationally cleaved by a caspase-dependent mechanism to form a secreted PDZ domain-containing protein 2 (sPDZD2) with unknown functions in humans. In this study, we demonstrate the endogenous expression of PDZD2 and secretion of sPDZD2 in cancerous DU145, PC-3, 22Rv1, LNCaP, and immortalized RWPE-1 prostate epithelial cells. Inhibition of endogenous sPDZD2 production and secretion by DU145, PC-3, 22Rv1, and RWPE-1 cells via the caspase-3 inhibitor Z-DEVD-FMK resulted in increased cell proliferation, which was abrogated by treatment with exogenous recombinant sPDZD2. Whereas sPDZD2-induced antiproliferation in DU145, PC-3, and 22Rv1 cells, it induced apoptosis in LNCaP cells. The data suggest that endogenous sPDZD2, produced by caspase-3-mediated cleavage from PDZD2, may function as a novel autocrine growth suppressor for human prostate cancer cells. The antiproliferative effect of sPDZD2 was apparently mediated through slowing the entry of DU145, PC-3, and 22Rv1 cells into the S phase of the cell cycle. In DU145 cells, this can be attributed to stimulated p53 and p21 CIP1/WAF1 expression by sPDZD2. On the other hand, the apoptotic effect of sPDZD2 on LNCaP cells was apparently mediated via p53-independent Bad stimulation. Together our results indicate the presence of p53-dependent and p53-independent PDZD2/sPDZD2 autocrine growth suppressive signaling pathways in human prostate cancer cells and suggest a novel therapeutic approach of harnessing the latent tumor-suppressive potential of an endogenous autocrine signaling protein like sPDZD2 to inhibit prostate cancer growth. Copyright © 2006 by The Endocrine Society.postprin

    Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c

    Get PDF
    The forkhead box (FOX) transcription factor FOXM1 is ubiquitously expressed in proliferating cells. FOXM1 expression peaks at the G2/M phase of the cell cycle and its functional deficiency in mice leads to defects in mitosis. To investigate the role of FOXM1 in the cell cycle, we used synchronized hTERT-BJ1 fibroblasts to examine the cell cycle-dependent regulation of FOXM1 function. We observed that FOXM1 is localized mainly in the cytoplasm in cells at late-G1 and S phases. Nuclear translocation occurs just before entry into the G2/M phase and is associated with phosphorylation of FOXM1. Consistent with the dependency of FOXM1 function on mitogenic signals, nuclear translocation of FOXM1 requires activity of the Raf/MEK/MAPK signaling pathway and is enhanced by the MAPK activator aurintricarboxylic acid. This activating effect was suppressed by the MEK1/2 inhibitor U0126. In transient reporter assays, constitutively active MEK1 enhances the transactivating effect of FOXM1c, but not FOXM1b, on the cyclin B1 promoter. RT-PCR analysis confirmed that different cell lines and tissues predominantly express the FOXM1c transcript. Mutations of two ERK1/2 target sequences within FOXM1c completely abolish the MEK1 enhancing effect, suggesting a direct link between Raf/MEK/MAPK signaling and FOXM1 function. Importantly, inhibition of Raf/MEK/MAPK signaling by U0126 led to suppression of FOXM1 target gene expression and delayed progression through G2/M, verifying the functional relevance of FOXM1 activation by MEK1. In summary, we provide the first evidence that Raf/MEK/MAPK signaling exerts its G2/M regulatory effect via FOXM1c.published_or_final_versio

    AKT Signaling Mediates IGF-I Survival Actions on Otic Neural Progenitors

    Get PDF
    Background: Otic neurons and sensory cells derive from common progenitors whose transition into mature cells requires the coordination of cell survival, proliferation and differentiation programmes. Neurotrophic support and survival of post-mitotic otic neurons have been intensively studied, but the bases underlying the regulation of programmed cell death in immature proliferative otic neuroblasts remains poorly understood. The protein kinase AKT acts as a node, playing a critical role in controlling cell survival and cell cycle progression. AKT is activated by trophic factors, including insulin-like growth factor I (IGF-I), through the generation of the lipidic second messenger phosphatidylinositol 3-phosphate by phosphatidylinositol 3-kinase (PI3K). Here we have investigated the role of IGF-dependent activation of the PI3K-AKT pathway in maintenance of otic neuroblasts. Methodology/Principal Findings: By using a combination of organotypic cultures of chicken (Gallus gallus) otic vesicles and acoustic-vestibular ganglia, Western blotting, immunohistochemistry and in situ hybridization, we show that IGF-I-activation of AKT protects neural progenitors from programmed cell death. IGF-I maintains otic neuroblasts in an undifferentiated and proliferative state, which is characterised by the upregulation of the forkhead box M1 (FoxM1) transcription factor. By contrast, our results indicate that post-mitotic p27Kip-positive neurons become IGF-I independent as they extend their neuronal processes. Neurons gradually reduce their expression of the Igf1r, while they increase that of the neurotrophin receptor, TrkC. Conclusions/Significance: Proliferative otic neuroblasts are dependent on the activation of the PI3K-AKT pathway by IGF-I for survival during the otic neuronal progenitor phase of early inner ear development

    Emergence and Modular Evolution of a Novel Motility Machinery in Bacteria

    Get PDF
    Bacteria glide across solid surfaces by mechanisms that have remained largely mysterious despite decades of research. In the deltaproteobacterium Myxococcus xanthus, this locomotion allows the formation stress-resistant fruiting bodies where sporulation takes place. However, despite the large number of genes identified as important for gliding, no specific machinery has been identified so far, hampering in-depth investigations. Based on the premise that components of the gliding machinery must have co-evolved and encode both envelope-spanning proteins and a molecular motor, we re-annotated known gliding motility genes and examined their taxonomic distribution, genomic localization, and phylogeny. We successfully delineated three functionally related genetic clusters, which we proved experimentally carry genes encoding the basal gliding machinery in M. xanthus, using genetic and localization techniques. For the first time, this study identifies structural gliding motility genes in the Myxobacteria and opens new perspectives to study the motility mechanism. Furthermore, phylogenomics provide insight into how this machinery emerged from an ancestral conserved core of genes of unknown function that evolved to gliding by the recruitment of functional modules in Myxococcales. Surprisingly, this motility machinery appears to be highly related to a sporulation system, underscoring unsuspected common mechanisms in these apparently distinct morphogenic phenomena

    Short-term geriatric assessment units: 30 years later

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increasing number of hospitalized elderly persons has greatly challenged decision makers to reorganize services so as to meet the needs of this clientele. Established progressively over the last 30 years, the short-term Geriatric Assessment Unit (GAU) is a specialized care program, now implemented in all the general hospital centres in Quebec. Within the scope of a broader reflection upon the appropriate care delivery for elderly patients in our demographic context, there is a need to revisit the role of GAU within the hospital and the continuum of care. The objective of this project is to describe the range of activities offered by Quebec GAU and the resources available to them.</p> <p>Methods</p> <p>In 2004, 64 managers of 71 GAU answered a mail questionnaire which included 119 items covering their unit's operation and resources in 2002-2003. The clinical and administrative characteristics of the clientele admitted during this period were obtained from the provincial database Med-Echo. The results were presented according to the geographical location of GAU, their size, their university academic affiliation, the composition of their medical staff, and their clinical care profile.</p> <p>Results</p> <p>Overall, GAU programs admitted 9% of all patients aged 65 years and older in the surveyed year. GAU patients presented one or more geriatric syndromes, including dementia. Based on their clientele, three distinct clinical care profiles of GAU were identified. Only 19% of GAU were focused on geriatric assessment and acute care management; 23% mainly offered rehabilitation care, and the others offered a mix of both types. Thus, there was a significant heterogeneity in GAU's operation.</p> <p>Conclusions</p> <p>The GAU is at the cutting edge of geriatric services in hospital centres. Given the scarcity of these resources, it would be appropriate to better target the clientele that may benefit from them. Standardizing and promoting GAU's primary role in acute care must be reinforced. In order to meet the needs of the frail elderly not admitted in GAU, alternative care models centered on prevention of functional decline must be applied throughout all hospital wards.</p

    Activation of the cyclin B1 promoter by FOXM1 is stimulated by the mitogen-activated protein kinase pathway

    No full text

    On the Fusion of Prioritized EL Ontologies

    No full text
    International audienc
    • …
    corecore