36 research outputs found

    First report of a potyvirus infecting Albuca rautanenii in the Namib Desert

    Get PDF
    Chlorotic, streak-like symptoms were observed in April 2013 on a single specimen of Albuca rautanenii (Schinz) J.C.Manning & Goldblatt (Family: Hyacinthaceae) found among other plants near Homeb in the Namib Desert, Namibia. No potential insect vectors (e.g. aphids) were observed around and on the infected plant. An extract from symptomatic leaves was assessed by transmission electron microscopy (leaf dip method) to ascertain if the symptoms were viral in origin. Long, flexuous threadlike particles 687-825 nm in length and 12.5 nm in diameter were observed. The morphology and size of the particles were indicative of a putative member of the taxonomic family Potyviridae.http://apsjournals.apsnet.org/loi/pdishb2017Genetic

    Viruses, variants and vaccines

    Get PDF
    The current SARS-CoV-2 pandemic has brought a number of major global clinical, sociological and economic issues into sharp focus. We address some of these issues, focusing on short-term factors such as virus mutations and vaccine efficacy, and also considering the longer-term implications of the current pandemic. We discuss societal responses to the presence of a pathogen that will probably remain in circulation for decades or longer, and to future new emergent viruses.The South African Medical Research Council and the National Research Foundation.http://www.samj.org.zaam2022BiochemistryGeneticsImmunologyMicrobiology and Plant Patholog

    Unitarity and Interfering Resonances in pipi Scattering and in Pion Production piN->pipiN

    Get PDF
    Additivity of Breit-Wigner phases has been proposed to describe interfering resonances in partial waves in ππ\pi\pi scattering. This assumption leads to an expression for partial wave amplitudes that involves products of Breit-Wigner amplitudes. We show that this expression is equivalent to a coherent sum of Breit-Wigner amplitudes with specific complex coefficients which depend on the resonance parameters of all contributing resonances. We use analyticity of ππ\pi\pi partial wave amplitudes to show that they must have the form of a coherent sum of Breit-Wigner amplitudes with complex coefficients and a complex coherent background. The assumption of additivity of Breit-Wigner phases restricts the partial waves to analytical functions with very specific form of residues of Breit-Wigner poles. We argue that the general form provided by the analyticity is more appropriate in fits to data to determine resonance parameters. The partial wave unitarity can be imposed using the modern methods of constrained optimization. We discuss unitarity and the production amplitudes in πNππN\pi N\to\pi\pi N and use analyticity in the dipion mass variable to justify the common practice of writing the production amplitudes as a coherent sum of Breit-Wigner amplitudes with free complex coefficients and a complex coherent background in fits to mass spectra with interfering resonances.Comment: 31 page

    Collisional and Radiative Processes in Optically Thin Plasmas

    Get PDF
    Most of our knowledge of the physical processes in distant plasmas is obtained through measurement of the radiation they produce. Here we provide an overview of the main collisional and radiative processes and examples of diagnostics relevant to the microphysical processes in the plasma. Many analyses assume a time-steady plasma with ion populations in equilibrium with the local temperature and Maxwellian distributions of particle velocities, but these assumptions are easily violated in many cases. We consider these departures from equilibrium and possible diagnostics in detail

    Traditional and transgenic strategies for controlling tomato-infecting begomoviruses

    Full text link

    The Physics of the B Factories

    Get PDF

    Extensive recombination–induced disruption of genetic interactions is highly deleterious but can be partially reversed by small numbers of secondary-recombination events

    Get PDF
    Although homologous recombination can potentially provide viruses with vastly more evolutionary options than are available through mutation alone, there are considerable limits on the adaptive potential of this important evolutionary process. Primary among these is the disruption of favorable coevolved genetic interactions that can occur following the transfer of foreign genetic material into a genome. Although the fitness costs of such disruptions can be severe, in some cases they can be rapidly recouped by either compensatory mutations or secondary recombination events. Here, we used a maize streak virus (MSV) experimental model to explore both the extremes of recombination-induced genetic disruption and the capacity of secondary recombination to adaptively reverse almost lethal recombination events. Starting with two naturally occurring parental viruses, we synthesized two of the most extreme conceivable MSV chimeras, each effectively carrying 182 recombination breakpoints and containing thorough reciprocal mixtures of parental polymorphisms. Although both chimeras were severely defective and apparently noninfectious, neither had individual movement-, encapsidation-, or replication-associated genome regions that were on their own “lethally recombinant.” Surprisingly, mixed inoculations of the chimeras yielded symptomatic infections with viruses with secondary recombination events. These recombinants had only 2 to 6 breakpoints, had predominantly inherited the least defective of the chimeric parental genome fragments, and were obviously far more fit than their synthetic parents. It is clearly evident, therefore, that even when recombinationally disrupted virus genomes have extremely low fitness and there are no easily accessible routes to full recovery, small numbers of secondary recombination events can still yield tremendous fitness gains

    Inducible resistance to Maize streak virus

    Get PDF
    Maize streak virus (MSV), which causes maize streak disease (MSD), is the major viral pathogenic constraint on maize production in Africa. Type member of the Mastrevirus genus in the family Geminiviridae, MSV has a 2.7 kb, single-stranded circular DNA genome encoding a coat protein, movement protein, and the two replication-associated proteins Rep and RepA. While we have previously developed MSV-resistant transgenic maize lines constitutively expressing “dominant negative mutant” versions of the MSV Rep, the only transgenes we could use were those that caused no developmental defects during the regeneration of plants in tissue culture. A better transgene expression system would be an inducible one, where resistance-conferring transgenes are expressed only in MSV-infected cells. However, most known inducible transgene expression systems are hampered by background or “leaky” expression in the absence of the inducer. Here we describe an adaptation of the recently developed INPACT system to express MSV-derived resistance genes in cell culture. Split gene cassette constructs (SGCs) were developed containing three different transgenes in combination with three different promoter sequences. In each SGC, the transgene was split such that it would be translatable only in the presence of an infecting MSV’s replication associated protein. We used a quantitative real-time PCR assay to show that one of these SGCs (pSPLITrepIII-Rb-Ubi) inducibly inhibits MSV replication as efficiently as does a constitutively expressed transgene that has previously proven effective in protecting transgenic maize from MSV. In addition, in our cell-culture based assay pSPLITrepIII-Rb-Ubi inhibited replication of diverse MSV strains, and even, albeit to a lesser extent, of a different mastrevirus species. The application of this new technology to MSV resistance in maize could allow a better, more acceptable produc

    Production of Human papillomavirus pseudovirions in plants and their use in pseudovirion-based neutralisation assays in mammalian cells

    No full text
    Human papillomaviruses (HPV) cause cervical cancer and have recently also been implicated in mouth, laryngeal and anogenital cancers. There are three commercially available prophylactic vaccines that show good efficacy; however, efforts to develop second-generation vaccines that are more affordable, stable and elicit a wider spectrum of cross-neutralising immunity are still ongoing. Testing antisera elicited by current and candidate HPV vaccines for neutralizing antibodies is done using a HPV pseudovirion (PsV)-based neutralisation assay (PBNA). PsVs are produced by transfection of mammalian cell cultures with plasmids expressing L1 and L2 capsid proteins, and a reporter gene plasmid, a highly expensive process. We investigated making HPV-16 PsVs in plants, in order to develop a cheaper alternative. The secreted embryonic alkaline phosphatase (SEAP) reporter gene and promoter were cloned into a geminivirus-derived plant expression vector, in order to produce circular dsDNA replicons. This was co-introduced into Nicotiana benthamiana plants with vectors expressing L1 and L2 via agroinfiltration, and presumptive PsVs were purified. The PsVs contained DNA, and could be successfully used for PBNA with anti-HPV antibodies. This is the first demonstration of the production of mammalian pseudovirions in plants, and the first demonstration of the potential of plants to make DNA vaccines

    Sequence Diversity and Virulence in Zea mays of Maize Streak Virus Isolates

    Get PDF
    AbstractFull genomic sequences were determined for 12 Maize streak virus (MSV) isolates obtained from Zea mays and wild grass species. These and 10 other publicly available full-length sequences were used to classify a total of 66 additional MSV isolates that had been characterized by PCR–restriction fragment length polymorphism and/or partial nucleotide sequence analysis. A description is given of the host and geographical distribution of the MSV strain and subtype groupings identified. The relationship between the genotypes of 21 fully sequenced virus isolates and their virulence in differentially MSV-resistant Z. mays genotypes was examined. Within the only MSV strain grouping that produced severe symptoms in maize, highly virulent and widely distributed genotypes were identified that are likely to pose the most serious threat to maize production in Africa. Evidence is presented that certain of the isolates investigated may be the products of either intra- or interspecific recombination
    corecore