45 research outputs found
Angular photogrammetric analysis of the soft tissue profile in 12-year-old Southern Chinese
published_or_final_versio
Feasibility study of robotic hypofractionated lung radiotherapy by individualized internal target volume and XSight Spine Tracking: A preliminary dosimetric evaluation
published_or_final_versio
Potential therapeutic efficacy of photodynamic therapy on triple negative breast cancer in hormonal microenvironment
SignificanceThere are seldom studies on the determination of cancer treatment efficacy related to normal hormonal tumor microenvironment on triple negative breast cancer (TNBC). This study aimed to determine Hexyl-ALA-PDT efficacy on TNBC in a simulated hormonal microenvironment.ApproachThe 3D spheroids of TNBC cells (MDA-MB-231) were generated in the hormonal supplemented microenvironment. The accumulation of PpIX, phototoxicity, the ROS level and p-ULK1 expression level mediated by Hexyl-ALA-PDT were determined by confocal microscopy, MTT assay and flow cytometry.ResultsA lower Hexyl-ALA concentration was required to achieve the same lethal dose of LD50 with hormonal supplement in 3D spheroids. It was found that the ROS level was increased at lower Hexyl-ALA-PDT dose in hormonal microenvironment, which also correlated the decrease of p-ULK1 expression by PDT.ConclusionsHexyl-ALA-PDT increased ROS level in TNBC in hormonal microenvironment; and with the reduced p-ULK1 expression thus indicating autophagy of cell death might be triggered
Digital models as an alternative to plaster casts in assessment of orthodontic treatment outcomes
Poster SessionThis journal suppl. entitled: Special Issue: Abstracts of the 2012 FDI Annual World Dental CongressThis study aimed to evaluate the use of digital models in assessing occlusal improvements following orthodontic treatment compared with assessments from plaster casts.
Digital models and plaster casts of 39 consecutive patients at pre- and post-treatment were obtained and assessed using the Peer Assessment Rating (PAR) index and the Index of Complexity and Treatment Need (ICON). PAR and ICON scores were compared in comparison analyses at group level and at an indivi...postprin
Angular photogrammetric analysis of the soft tissue profile in southern Chinese
Poster SessionThis journal suppl. entitled: Special Issue: Abstracts of the 2012 FDI Annual World Dental CongressThe evaluation of the patients’ soft tissue profile is an important aspect in orthodontic diagnosis and treatment planning. The aim of this study was to quantify average parameters that define the lateral soft tissue profiles of 12-year-old southern Chinese children and to describe any gender differences ...postprin
Noninvasive Prenatal Diagnosis of Fetal Trisomy 21 by Allelic Ratio Analysis Using Targeted Massively Parallel Sequencing of Maternal Plasma DNA
BACKGROUND: Plasma DNA obtained from a pregnant woman contains a mixture of maternal and fetal DNA. The fetal DNA proportion in maternal plasma is relatively consistent as determined using polymorphic genetic markers across different chromosomes in euploid pregnancies. For aneuploid pregnancies, the observed fetal DNA proportion measured using polymorphic genetic markers for the aneuploid chromosome would be perturbed. In this study, we investigated the feasibility of analyzing single nucleotide polymorphisms using targeted massively parallel sequencing to detect such perturbations in mothers carrying trisomy 21 fetuses. METHODOLOGY/PRINCIPAL FINDINGS: DNA was extracted from plasma samples collected from fourteen pregnant women carrying singleton fetuses. Hybridization-based targeted sequencing was used to enrich 2 906 single nucleotide polymorphism loci on chr7, chr13, chr18 and chr21. Plasma DNA libraries with and without target enrichment were analyzed by massively parallel sequencing. Genomic DNA samples of both the mother and fetus for each case were genotyped by single nucleotide polymorphism microarray analysis. For the targeted regions, the mean sequencing depth of the enriched samples was 225-fold higher than that of the non-enriched samples. From the targeted sequencing data, the ratio between fetus-specific and shared alleles increased by approximately 2-fold on chr21 in the paternally-derived trisomy 21 case. In comparison, the ratio is decreased by approximately 11% on chr21 in the maternally-derived trisomy 21 cases but with much overlap with the ratio of the euploid cases. Computer simulation revealed the relationship between the fetal DNA proportion, the number of informative alleles and the depth of sequencing. CONCLUSIONS/SIGNIFICANCE: Targeted massively parallel sequencing of single nucleotide polymorphism loci in maternal plasma DNA is a potential approach for trisomy 21 detection. However, the method appears to be less robust than approaches using non-polymorphism-based counting of sequence tags in plasma
Noninvasive Prenatal Diagnosis of Fetal Trisomy 18 and Trisomy 13 by Maternal Plasma DNA Sequencing
Massively parallel sequencing of DNA molecules in the plasma of pregnant women has been shown to allow accurate and noninvasive prenatal detection of fetal trisomy 21. However, whether the sequencing approach is as accurate for the noninvasive prenatal diagnosis of trisomy 13 and 18 is unclear due to the lack of data from a large sample set. We studied 392 pregnancies, among which 25 involved a trisomy 13 fetus and 37 involved a trisomy 18 fetus, by massively parallel sequencing. By using our previously reported standard z-score approach, we demonstrated that this approach could identify 36.0% and 73.0% of trisomy 13 and 18 at specificities of 92.4% and 97.2%, respectively. We aimed to improve the detection of trisomy 13 and 18 by using a non-repeat-masked reference human genome instead of a repeat-masked one to increase the number of aligned sequence reads for each sample. We then applied a bioinformatics approach to correct GC content bias in the sequencing data. With these measures, we detected all (25 out of 25) trisomy 13 fetuses at a specificity of 98.9% (261 out of 264 non-trisomy 13 cases), and 91.9% (34 out of 37) of the trisomy 18 fetuses at 98.0% specificity (247 out of 252 non-trisomy 18 cases). These data indicate that with appropriate bioinformatics analysis, noninvasive prenatal diagnosis of trisomy 13 and trisomy 18 by maternal plasma DNA sequencing is achievable
Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study.
To validate the clinical efficacy and practical feasibility of massively parallel maternal plasma DNA sequencing to screen for fetal trisomy 21 among high risk pregnancies clinically indicated for amniocentesis or chorionic villus sampling. Diagnostic accuracy validated against full karyotyping, using prospectively collected or archived maternal plasma samples. Prenatal diagnostic units in Hong Kong, United Kingdom, and the Netherlands. 753 pregnant women at high risk for fetal trisomy 21 who underwent definitive diagnosis by full karyotyping, of whom 86 had a fetus with trisomy 21. Intervention Multiplexed massively parallel sequencing of DNA molecules in maternal plasma according to two protocols with different levels of sample throughput: 2-plex and 8-plex sequencing. Proportion of DNA molecules that originated from chromosome 21. A trisomy 21 fetus was diagnosed when the z score for the proportion of chromosome 21 DNA molecules was >3. Diagnostic sensitivity, specificity, positive predictive value, and negative predictive value were calculated for trisomy 21 detection. Results were available from 753 pregnancies with the 8-plex sequencing protocol and from 314 pregnancies with the 2-plex protocol. The performance of the 2-plex protocol was superior to that of the 8-plex protocol. With the 2-plex protocol, trisomy 21 fetuses were detected at 100% sensitivity and 97.9% specificity, which resulted in a positive predictive value of 96.6% and negative predictive value of 100%. The 8-plex protocol detected 79.1% of the trisomy 21 fetuses and 98.9% specificity, giving a positive predictive value of 91.9% and negative predictive value of 96.9%. Multiplexed maternal plasma DNA sequencing analysis could be used to rule out fetal trisomy 21 among high risk pregnancies. If referrals for amniocentesis or chorionic villus sampling were based on the sequencing test results, about 98% of the invasive diagnostic procedures could be avoided.published_or_final_versio
Systematic Identification of Placental Epigenetic Signatures for the Noninvasive Prenatal Detection of Edwards Syndrome
Background: Noninvasive prenatal diagnosis of fetal aneuploidy by maternal plasma analysis is challenging owing to the low fractional and absolute concentrations of fetal DNA in maternal plasma. Previously, we demonstrated for the first time that fetal DNA in maternal plasma could be specifically targeted by epigenetic (DNA methylation) signatures in the placenta. By comparing one such methylated fetal epigenetic marker located on chromosome 21 with another fetal genetic marker located on a reference chromosome in maternal plasma, we could infer the relative dosage of fetal chromosome 21 and noninvasively detect fetal trisomy 21. Here we apply this epigenetic-genetic (EGG) chromosome dosage approach to detect Edwards syndrome (trisomy 18) in the fetus noninvasively. Principal Findings: We have systematically identified methylated fetal epigenetic markers on chromosome 18 by methylated DNA immunoprecipitation (MeDIP) and tiling array analysis with confirmation using quantitative DNA methylation assays. Methylated DNA sequences from an intergenic region between the VAPA and APCDD1 genes (the VAPAAPCDD1 DNA) were detected in pre-delivery, but not post-delivery, maternal plasma samples. The concentrations correlated positively with those of an established fetal genetic marker, ZFY, in pre-delivery maternal plasma. The ratios of methylated VAPA-APCDD1(chr18) to ZFY(chrY) were higher in maternal plasma samples of 9 male trisomy 18 fetuses than those of 27 male euploid fetuses (Mann-Whitney test, P = 0.029). We defined the cutoff value for detecting trisomy 18 fetuses as mean+1.96 SD of the EGG ratios of the euploid cases. Eight of 9 trisomy 18 and 1 of 27 euploid cases showed EGG ratios higher than the cutoff value, giving a sensitivity of 88.9% and a specificity of 96.3%. Conclusions: Our data have shown that the methylated VAPA-APCDD1 DNA in maternal plasma is redominantly derived from the fetus. We have demonstrated that this novel fetal epigenetic marker in maternal plasma is useful for the noninvasive detection of fetal trisomy 18. © Tsui et al.published_or_final_versio
Quantitative analysis of DNA levels in maternal plasma in normal and Down syndrome pregnancies
BACKGROUND: We investigated fetal and total DNA levels in maternal plasma in patients bearing fetuses affected with Down syndrome in comparison to controls carrying fetuses with normal karyotype. METHODS: DNA levels in maternal plasma were measured using real-time quantitative PCR using SRY and β-globin genes as markers. Twenty-one pregnant women with a singleton fetus at a gestational age ranging from 15 to 19 weeks recruited before amniocentesis (carried out for reasons including material serum screening and advanced material age), and 16 pregnant women bearing fetuses affected with Down syndrome between 17 to 22 weeks of gestation were involved in the study. RESULTS: The specificity of the system reaches 100% (no Y signal was detected in 14 women pregnant with female fetuses) and the sensitivity 91.7% (SRY amplification in 22 of 24 examined samples). The median fetal DNA levels in women carrying Down syndrome (n=11) and the controls (n=13) were 23.3 (range 0–58.5) genome-equivalents/ml and 24.5 (range 0–47.5) genome-equivalents/ml of maternal plasma, respectively (P = 0.62). The total median DNA levels in pregnancies with Down syndrome and the controls were 10165 (range 615–65000) genome-equivalents/ml and 7330 (range 1300–36750) genome-equivalents/ml, respectively (P = 0.32). The fetal DNA proportion in maternal plasma was 0%-6 % (mean 0.8%) in women carrying Down syndrome and 0%-2.6 % (mean 0.7 %) in the controls, respectively (P=0.86). CONCLUSIONS: Our study revealed no difference in fetal DNA levels and fetal DNA: maternal DNA ratio between the patients carrying Down syndrome fetuses and the controls