1,529 research outputs found

    Improved algorithm for neuronal ensemble inference by Monte Carlo method

    Full text link
    Neuronal ensemble inference is one of the significant problems in the study of biological neural networks. Various methods have been proposed for ensemble inference from their activity data taken experimentally. Here we focus on Bayesian inference approach for ensembles with generative model, which was proposed in recent work. However, this method requires large computational cost, and the result sometimes gets stuck in bad local maximum solution of Bayesian inference. In this work, we give improved Bayesian inference algorithm for these problems. We modify ensemble generation rule in Markov chain Monte Carlo method, and introduce the idea of simulated annealing for hyperparameter control. We also compare the performance of ensemble inference between our algorithm and the original one.Comment: 14 pages, 3 figure

    Physiological and enzymatic changes in rice seeds stored at low temperatures

    Get PDF
    This study aimed to evaluate the effect of low temperatures on the physiological and enzymatic changes of rice seeds. The seeds were packed in airtight chambers and maintained at temperatures of 8 and -50°C for periods of 15, 30 , 45, 60, 75 and 90 days. The same procedure was adopted for the control treatment with the seeds  kept at a temperature of 25°C. The seeds were evaluated regarding germination test; seedling emergency;  emergency speed index; length and dry weight of radicle; and seedling of shoot. The activity of amylase and  total protein content were also evaluated. The temperatures of 8 and -50°C significantly influenced the  physiological quality and the enzyme amylase activity of rice seeds, resulting in higher germination, seedling  emergence and enzyme activity. The temperature is a promising alternative for the maintenance of  physiological quality and enzymatic activity of rice seeds during storage. Key words: Oryza sativa L., enzymatic activity, physiological quality, storage.Abbreviation: ESI, Emergence speed index; PVP, polyvinylpyrrolidone

    Complete larval development of the hermit crabs Clibanarius aequabilis and Clibanarius erythropus (Decapoda : Anomura : Diogenidae), under laboratory conditions, with a revision of the larval features of genus Clibanarius

    Get PDF
    The complete larval development (four zoeae and one megalopa) of Clibanarius aequabilis and C. erythropus, reared under laboratory conditions, is described and illustrated. The larval stages of the two northeastern Atlantic Clibanarius species cannot be easily differentiated. Their morphological characters are compared with those of other known Clibanarius larvae. The genus Clibanarius is very homogeneous with respect to larval characters. All Clibanarius zoeae display a broad and blunt rostrum, smooth abdominal segments and an antennal scale without a terminal spine. Beyond the second zoeal stage, the fourth telson process is present as a fused spine, and the uropods are biramous. In the fourth larval stage all species display a mandibular palp. The Clibanarius megalopa presents weakly developed or no ocular scales, symmetrical chelipeds, apically curved corneous dactylus in the second and third pereiopods, and 5-11 setae on the posterior margin of the telson. Apart from the number of zoeal stages, Clibanarius species may be separated, beyond the second zoeal stage, by the telson formula and the morphology of the fourth telson process.info:eu-repo/semantics/publishedVersio

    Imaging Electronic Correlations in Twisted Bilayer Graphene near the Magic Angle

    Get PDF
    Twisted bilayer graphene with a twist angle of around 1.1{\deg} features a pair of isolated flat electronic bands and forms a strongly correlated electronic platform. Here, we use scanning tunneling microscopy to probe local properties of highly tunable twisted bilayer graphene devices and show that the flat bands strongly deform when aligned with the Fermi level. At half filling of the bands, we observe the development of gaps originating from correlated insulating states. Near charge neutrality, we find a previously unidentified correlated regime featuring a substantially enhanced flat band splitting that we describe within a microscopic model predicting a strong tendency towards nematic ordering. Our results provide insights into symmetry breaking correlation effects and highlight the importance of electronic interactions for all filling factors in twisted bilayer graphene.Comment: Main text 9 pages, 4 figures; Supplementary Information 25 page

    Wettability of amorphous and nanocrystalline Fe78B13Si9 substrates by molten Sn and Bi

    Get PDF
    The wettability of amorphous and annealing-induced nanocrystalline Fe78B13Si9 ribbons by molten Sn and Bi at 600 K was measured using an improved sessile drop method. The results demonstrate that the structural relaxation and crystallization in the amorphous substrates do not substantially change the wettability with molten Bi because of their invariable physical interaction, but remarkably deteriorate the wettability and interfacial bonding with molten Sn as a result of changing a chemical interaction to a physical one for the atoms at the interface

    Influence of ischemic core muscle fibers on surface depolarization potentials in superfused cardiac tissue preparations: a simulation study

    Get PDF
    Thin-walled cardiac tissue samples superfused with oxygenated solutions are widely used in experimental studies. However, due to decreased oxygen supply and insufficient wash out of waste products in the inner layers of such preparations, electrophysiological functions could be compromised. Although the cascade of events triggered by cutting off perfusion is well known, it remains unclear as to which degree electrophysiological function in viable surface layers is affected by pathological processes occurring in adjacent tissue. Using a 3D numerical bidomain model, we aim to quantify the impact of superfusion-induced heterogeneities occurring in the depth of the tissue on impulse propagation in superficial layers. Simulations demonstrated that both the pattern of activation as well as the distribution of extracellular potentials close to the surface remain essentially unchanged. This was true also for the electrophysiological properties of cells in the surface layer, where most relevant depolarization parameters varied by less than 5.5 %. The main observed effect on the surface was related to action potential duration that shortened noticeably by 53 % as hypoxia deteriorated. Despite the known limitations of such experimental methods, we conclude that superfusion is adequate for studying impulse propagation and depolarization whereas repolarization studies should consider the influence of pathological processes taking place at the core of tissue sample
    corecore