4,126 research outputs found

    Discovery of a Synchrotron Bubble Associated with PSR J1015-5719

    Get PDF
    postprin

    Cardiotrophin-like cytokine/cytokine-like factor 1 is an essential trophic factor for lumbar and facial motoneurons in vivo

    Get PDF
    The ciliary neurotrophic factor alpha-receptor(CNTFRalpha) is required for motoneuron survival during development, but the relevant ligand(s) has not been determined. One candidate is the heterodimer formed by cardiotrophin-like cytokine (CLC) and cytokine-like factor 1 (CLF). CLC/CLF binds to CNTFRalpha and enhances the survival of developing motoneurons in vitro; whether this novel trophic factor plays a role in neural development in vivo has not been tested. We examined motor and sensory neurons in embryonic chicks treated with CLC and in mice with a targeted deletion of the clf gene. Treatment with CLC increased the number of lumbar spinal cord motoneurons that survived the cell death period in chicks. However, this effect was regionally specific, because brachial and thoracic motoneurons were unaffected. Similarly, newborn clf -/- mice exhibited a significant reduction in lumbar motoneurons, with no change in the brachial or thoracic cord. Clf deletion also affected brainstem motor nuclei in a regionally specific manner; the number of motoneurons in the facial but not hypoglossal nucleus was significantly reduced. Sensory neurons of the dorsal root ganglia were not affected by either CLC treatment or clf gene deletion. Finally, mRNA for both clc and clf was found in skeletal muscle fibers of embryonic mice during the motoneuron cell death period. These findings support the view that CLC/CLF is a target-derived factor required for the survival of specific pools of motoneurons. The in vivo actions of CLC and CLF can account for many of the effects of CNTFRalpha on developing motoneurons

    Axisymmetric Waves in Layered Anisotropic Fibers and Composites

    Get PDF
    The complicated morphology of the new generation of advanced fibrous composites gave further impetus to the study of the interaction of ultrasonic waves with multilayered concentric cylindrical systems. Typically, the fiber consists of a cylindrical core embedded in a cladding region followed by a distinct interface zone separating the fiber system from the host (matrix) region. In addition, the cladding region itself often consists of subregions which can be identified as distinct layers. Each individual layer can posses certain degree of microscopic anisotropy adding to the macroscopic anisotropy produced by the presence of layering and imperfect interfaces. Relatively few efforts have been spent upon the study of free and immersed homogeneous anisotropic rods [1–5]. These works are insufficient to model real situations encountered in materials characterization of advanced fibrous composites. In order to better model advanced fibrous composites at least three major effects need to be accounted for. These are the inhomogeneous nature of the structure as reflected in its multilayering, the inherent microscopic anisotropy of some of the constituents and finally the quality of the interfaces. In this paper we briefly describe a unified analytical treatment of wave propagation along the fiber direction of multilayered coaxial fibrous systems embedded in a host material. A more detailed discussion of this general treatment will be presented elsewhere [6]. Figure 1 shows typical geometric situations including (a) a single multilayered fiber, (b) a single multilayered fiber either immersed in an infinite fluid or embedded in an infinite solid, and an infinite composite material with periodically distributed multilayered fiber

    Antimalarial 4(1H)-pyridones bind to the Qisite of cytochromebc1

    Get PDF
    Cytochrome bc1 is a proven drug target in the prevention and treatment of malaria. The rise in drug-resistant strains of Plasmodium falciparum, the organism responsible for malaria, has generated a global effort in designing new classes of drugs. Much of the design/redesign work on overcoming this resistance has been focused on compounds that are presumed to bind the Qo site (one of two potential binding sites within cytochrome bc1) using the known crystal structure of this large membrane-bound macromolecular complex via in silico modeling. Cocrystallization of the cytochrome bc1 complex with the 4(1H)-pyridone class of inhibitors, GSK932121 and GW844520, that have been shown to be potent antimalarial agents in vivo, revealed that these inhibitors do not bind at the Qo site but bind at the Qi site. The discovery that these compounds bind at the Qi site may provide a molecular explanation for the cardiotoxicity and eventual failure of GSK932121 in phase-1 clinical trial and highlight the need for direct experimental observation of a compound bound to a target site before chemical optimization and development for clinical trials. The binding of the 4(1H)-pyridone class of inhibitors to Qi also explains the ability of this class to overcome parasite Qo-based atovaquone resistance and provides critical structural information for future design of new selective compounds with improved safety profiles

    A novel MT-CO2 variant causing cerebellar ataxia and neuropathy: The role of muscle biopsy in diagnosis and defining pathogenicity

    Get PDF
    Pathogenic variants in mitochondrial DNA (mtDNA) are associated with significant clinical heterogeneity with neuromuscular involvement commonly reported. Non-syndromic presentations of mtDNA disease continue to pose a diagnostic challenge and with genomic testing still necessitating a muscle biopsy in many cases. Here we describe an adult patient who presented with progressive ataxia, neuropathy and exercise intolerance in whom the application of numerous Mendelian gene panels had failed to make a genetic diagnosis. Muscle biopsy revealed characteristic mitochondrial pathology (cytochrome c oxidase deficient, ragged-red fibers) prompting a thorough investigation of the mitochondrial genome. Two heteroplasmic MT-CO2 gene variants (NC_012920.1: m.7887G>A and m.8250G>A) were identified, necessitating single fiber segregation and familial studies – including the biopsy of the patient's clinically-unaffected mother - to demonstrate pathogenicity of the novel m.7887G>A p.(Gly101Asp) variant and establishing this as the cause of the mitochondrial biochemical defects and clinical presentation. In the era of high throughput whole exome and genome sequencing, muscle biopsy remains a key investigation in the diagnosis of patients with non-syndromic presentations of adult-onset mitochondrial disease and fully defining the pathogenicity of novel mtDNA variants

    A Novel Pathogenic Variant in MT-CO2 Causes an Isolated Mitochondrial Complex IV Deficiency and Late-Onset Cerebellar Ataxia

    Get PDF
    Both nuclear and mitochondrial DNA defects can cause isolated cytochrome c oxidase (COX; complex IV) deficiency, leading to the development of the mitochondrial disease. We report a 52-year-old female patient who presented with a late-onset, progressive cerebellar ataxia, tremor and axonal neuropathy. No family history of neurological disorder was reported. Although her muscle biopsy demonstrated a significant COX deficiency, there was no clinical and electromyographical evidence of myopathy. Electrophysiological studies identified low frequency sinusoidal postural tremor at 3 Hz, corroborating the clinical finding of cerebellar dysfunction. Complete sequencing of the mitochondrial DNA genome in muscle identified a novel MT-CO2 variant, m.8163A>G predicting p.(Tyr193Cys). We present several lines of evidence, in proving the pathogenicity of this heteroplasmic mitochondrial DNA variant, as the cause of her clinical presentation. Our findings serve as an important reminder that full mitochondrial DNA analysis should be included in the diagnostic pipeline for investigating individuals with spinocerebellar ataxi

    Comparison of Several Methods of Chromatographic Baseline Removal with a New Approach Based on Quantile Regression

    Get PDF
    The article is intended to introduce and discuss a new quantile regression method for baseline detrending of chromatographic signals. It is compared with current methods based on polynomial fitting, spline fitting, LOESS, and Whittaker smoother, each with thresholding and reweighting approach. For curve flexibility selection in existing algorithms, a new method based on skewness of the residuals is successfully applied. The computational efficiency of all approaches is also discussed. The newly introduced methods could be preferred to visible better performance and short computational time. The other algorithms behave in comparable way, and polynomial regression can be here preferred due to short computational time

    Evidence for the different physiological significance of the 6- and 2-minute walk tests in multiple sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Researchers have recently advocated for the 2-minute walk (2MW) as an alternative for the 6-minute walk (6MW) to assess long distance ambulation in persons with multiple sclerosis (MS). This recommendation has not been based on physiological considerations such as the rate of oxygen consumption (V·O<sub>2</sub>) over the 6MW range.</p> <p>Objective</p> <p>This study examined the pattern of change in V·O<sub>2 </sub>over the range of the 6MW in a large sample of persons with MS who varied as a function of disability status.</p> <p>Method</p> <p>Ninety-five persons with clinically-definite MS underwent a neurological examination for generating an Expanded Disability Status Scale (EDSS) score, and then completion of the 6MW protocol while wearing a portable metabolic unit and an accelerometer.</p> <p>Results</p> <p>There was a time main effect on V·O<sub>2 </sub>during the 6MW (<it>p </it>= .0001) such that V·O<sub>2 </sub>increased significantly every 30 seconds over the first 3 minutes of the 6MW, and then remained stable over the second 3 minutes of the 6MW. This occurred despite no change in cadence across the 6MW (<it>p </it>= .84).</p> <p>Conclusions</p> <p>The pattern of change in V·O<sub>2 </sub>indicates that there are different metabolic systems providing energy for ambulation during the 6MW in MS subjects and steady state aerobic metabolism is reached during the last 3 minutes of the 6MW. By extension, the first 3 minutes would represent a test of mixed aerobic and anaerobic work, whereas the second 3 minutes would represent a test of aerobic work during walking.</p
    corecore