122 research outputs found

    Anti-HIV-1 activity of cellulose acetate phthalate: Synergy with soluble CD4 and induction of "dead-end" gp41 six-helix bundles

    Get PDF
    BACKGROUND: Cellulose acetate phthalate (CAP), a promising candidate microbicide for prevention of sexual transmission of the human immunodeficiency virus type 1 (HIV-1) and other sexually transmitted disease (STD) pathogens, was shown to inactivate HIV-1 and to block the coreceptor binding site on the virus envelope glycoprotein gp120. It did not interfere with virus binding to CD4. Since CD4 is the primary cellular receptor for HIV-1, it was of interest to study CAP binding to HIV-1 complexes with soluble CD4 (sCD4) and its consequences, including changes in the conformation of the envelope glycoprotein gp41 within virus particles. METHODS: Enzyme-linked immunosorbent assays (ELISA) were used to study CAP binding to HIV-1-sCD4 complexes and to detect gp41 six-helix bundles accessible on virus particles using antibodies specific for the Ξ±-helical core domain of gp41. RESULTS: 1) Pretreatment of HIV-1 with sCD4 augments subsequent binding of CAP; 2) there is synergism between CAP and sCD4 for inhibition of HIV-1 infection; 3) treatment of HIV-1 with CAP induced the formation of gp41 six-helix bundles. CONCLUSIONS: CAP and sCD4 bind to distinct sites on HIV-1 IIIB and BaL virions and their simultaneous binding has profound effects on virus structure and infectivity. The formation of gp41 six-helical bundles, induced by CAP, is known to render the virus incompetent for fusion with target cells thus preventing infection

    CCR2-V64I polymorphism is associated with increased risk of cervical cancer but not with HPV infection or pre-cancerous lesions in African women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical cancer, caused by specific oncogenic types of human papillomavirus (HPV), is the second most common cancer in women worldwide. A large number of young sexually active women get infected by HPV but only a small fraction of them have persistent infection and develop cervical cancer pointing to co- factors including host genetics that might play a role in outcome of the HPV infection. This study investigated the role of <it>CCR2-V64I </it>polymorphism in cervical cancer, pre-cancers and HPV infection in South African women resident in Western Cape. <it>CCR2-V64I </it>polymorphism has been previously reported to influence the progression to cervical cancer in some populations and has also been associated with decreased progression from HIV infection to AIDS.</p> <p>Methods</p> <p>Genotyping for <it>CCR2-V64I </it>was done by PCR-SSP in a case-control study of 446 women (106 black African and 340 mixed-ancestry) with histologically confirmed invasive cervical cancer and 1432 controls (322 black African and 1110 mixed-ancestry) group-matched (1:3) by age, ethnicity and domicile status. In the control women HPV was detected using the Digene Hybrid Capture II test and cervical disease was detected by cervical cytology.</p> <p>Results</p> <p>The <it>CCR2-64I </it>variant was significantly associated with cervical cancer when cases were compared to the control group (P = 0.001). Further analysis comparing selected groups within the controls showed that individuals with abnormal cytology and high grade squamous intraepitleial neoplasia (HSIL) did not have this association when compared to women with normal cytology. HPV infection also showed no association with <it>CCR2-64I </it>variant. Comparing SIL positive controls with the cases showed a significant association of <it>CCR2-64I </it>variant (P = 0.001) with cervical cancer.</p> <p>Conclusions</p> <p>This is the first study of the role of <it>CCR2-V64I </it>polymorphism in cervical cancer in an African population. Our results show that <it>CCR2-64I </it>variant is associated with the risk of cervical cancer but does not affect the susceptibility to HPV infection or HSIL in South African women of black and mixed-ancestry origin. This result implies that the role of CCR2 is important in invasive cancer of the cervix but not in HPV infection or in the development of pre-cancers.</p

    Impact of the HIV-1 env Genetic Context outside HR1–HR2 on Resistance to the Fusion Inhibitor Enfuvirtide and Viral Infectivity in Clinical Isolates

    Get PDF
    Resistance mutations to the HIV-1 fusion inhibitor enfuvirtide emerge mainly within the drug's target region, HR1, and compensatory mutations have been described within HR2. The surrounding envelope (env) genetic context might also contribute to resistance, although to what extent and through which determinants remains elusive. To quantify the direct role of the env context in resistance to enfuvirtide and in viral infectivity, we compared enfuvirtide susceptibility and infectivity of recombinant viral pairs harboring the HR1–HR2 region or the full Env ectodomain of longitudinal env clones from 5 heavily treated patients failing enfuvirtide therapy. Prior to enfuvirtide treatment onset, no env carried known resistance mutations and full Env viruses were on average less susceptible than HR1–HR2 recombinants. All escape clones carried at least one of G36D, V38A, N42D and/or N43D/S in HR1, and accordingly, resistance increased 11- to 2800-fold relative to baseline. Resistance of full Env recombinant viruses was similar to resistance of their HR1–HR2 counterpart, indicating that HR1 and HR2 are the main contributors to resistance. Strictly X4 viruses were more resistant than strictly R5 viruses, while dual-tropic Envs featured similar resistance levels irrespective of the coreceptor expressed by the cell line used. Full Env recombinants from all patients gained infectivity under prolonged drug pressure; for HR1–HR2 viruses, infectivity remained steady for 3/5 patients, while for 2/5 patients, gains in infectivity paralleled those of the corresponding full Env recombinants, indicating that the env genetic context accounts mainly for infectivity adjustments. Phylogenetic analyses revealed that quasispecies selection is a step-wise process where selection of enfuvirtide resistance is a dominant factor early during therapy, while increased infectivity is the prominent driver under prolonged therapy

    X4 Human Immunodeficiency Virus Type 1 gp120 Promotes Human Hepatic Stellate Cell Activation and Collagen I Expression through Interactions with CXCR4

    Get PDF
    <div><h3>Background & Aims</h3><p>Patients coinfected with HIV-1 and HCV develop more rapid liver fibrosis than patients monoinfected with HCV. HIV RNA levels correlate with fibrosis progression implicating HIV directly in the fibrotic process. While activated hepatic stellate cells (HSCs) express the 2 major HIV chemokine coreceptors, CXCR4 and CCR5, little is known about the pro-fibrogenic effects of the HIV-1 envelope protein, gp120, on HSCs. We therefore examined the <em>in vitro</em> impact of X4 gp120 on HSC activation, collagen I expression, and underlying signaling pathways and examined the <em>in vivo</em> expression of gp120 in HIV/HCV coinfected livers.</p> <h3>Methods</h3><p>Primary human HSCs and LX-2 cells, a human HSC line, were challenged with X4 gp120 and expression of fibrogenic markers assessed by qRT-PCR and Western blot +/βˆ’ either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Downstream intracellular signaling pathways were evaluated with Western blot and pre-treatment with specific pathway inhibitors. Gp120 immunostaining was performed on HIV/HCV coinfected liver biopsies.</p> <h3>Results</h3><p>X4 gp 120 significantly increased expression of alpha-smooth muscle actin (a-SMA) and collagen I in HSCs which was blocked by pre-incubation with either CXCR4-targeted shRNA or anti-CXCR4 neutralizing antibody. Furthermore, X4 gp120 promoted Extracellular signal-regulated kinase (ERK) 1/2 phosphorylation and pretreatment with an ERK inhibitor attenuated HSC activation and collagen I expression. Sinusoidal staining for gp120 was evident in HIV/HCV coinfected livers.</p> <h3>Conclusions</h3><p>X4 HIV-1 gp120 is pro-fibrogenic through its interactions with CXCR4 on activated HSCs. The availability of small molecule inhibitors to CXCR4 make this a potential anti-fibrotic target in HIV/HCV coinfected patients.</p> </div

    Cryoelectron Tomography of HIV-1 Envelope Spikes: Further Evidence for Tripod-Like Legs

    Get PDF
    A detailed understanding of the morphology of the HIV-1 envelope (Env) spike is key to understanding viral pathogenesis and for informed vaccine design. We have previously presented a cryoelectron microscopic tomogram (cryoET) of the Env spikes on SIV virions. Several structural features were noted in the gp120 head and gp41 stalk regions. Perhaps most notable was the presence of three splayed legs projecting obliquely from the base of the spike head toward the viral membrane. Subsequently, a second 3D image of SIV spikes, also obtained by cryoET, was published by another group which featured a compact vertical stalk. We now report the cryoET analysis of HIV-1 virion-associated Env spikes using enhanced analytical cryoET procedures. More than 2,000 Env spike volumes were initially selected, aligned, and sorted into structural classes using algorithms that compensate for the β€œmissing wedge” and do not impose any symmetry. The results show varying morphologies between structural classes: some classes showed trimers in the head domains; nearly all showed two or three legs, though unambiguous three-fold symmetry was not observed either in the heads or the legs. Subsequently, clearer evidence of trimeric head domains and three splayed legs emerged when head and leg volumes were independently aligned and classified. These data show that HIV-1, like SIV, also displays the tripod-like leg configuration, and, unexpectedly, shows considerable gp41 leg flexibility/heteromorphology. The tripod-like model for gp41 is consistent with, and helps explain, many of the unique biophysical and immunological features of this region

    Characterization of Neuraminidases from the Highly Pathogenic Avian H5N1 and 2009 Pandemic H1N1 Influenza A Viruses

    Get PDF
    To study the precise role of the neuraminidase (NA), and its stalk region in particular, in the assembly, release, and entry of influenza virus, we deleted the 20-aa stalk segment from 2009 pandemic H1N1 NA (09N1) and inserted this segment, now designated 09s60, into the stalk region of a highly pathogenic avian influenza (HPAI) virus H5N1 NA (AH N1). The biological characterization of these wild-type and mutant NAs was analyzed by pseudotyped particles (pseudoparticles) system. Compared with the wild-type AH N1, the wild-type 09N1 exhibited higher NA activity and released more pseudoparticles. Deletion/insertion of the 09s60 segment did not alter this relationship. The infectivity of pseudoparticles harboring NA in combination with the hemagglutinin from HPAI H5N1 (AH H5) was decreased by insertion of 09s60 into AH N1 and was increased by deletion of 09s60 from 09N1. When isolated from the wild-type 2009H1N1 virus, 09N1 existed in the forms (in order of abundance) dimer>>tetramer>monomer, but when isolated from pseudoparticles, 09N1 existed in the forms dimer>monomer>>>tetramer. After deletion of 09s60, 09N1 existed in the forms monomer>>>dimer. AH N1 from pseudoparticles existed in the forms monomer>>dimer, but after insertion of 09s60, it existed in the forms dimer>>monomer. Deletion/insertion of 09s60 did not alter the NA glycosylation pattern of 09N1 or AH N1. The 09N1 was more sensitive than the AH N1 to the NA inhibitor oseltamivir, suggesting that the infectivity-enhancing effect of oseltamivir correlates with robust NA activity

    Architecture of a nascent viral fusion pore

    Get PDF
    Enveloped viruses use specialized protein machinery to fuse the viral membrane with that of the host cell during cell invasion. In influenza virus, hundreds of copies of the haemagglutinin (HA) fusion glycoprotein project from the virus surface. Despite intensive study of HA and its fusion activity, the protein's modus operandi in manipulating viral and target membranes to catalyse their fusion is poorly understood. Here, the three-dimensional architecture of influenza virus–liposome complexes at pH 5.5 was investigated by electron cryo-tomography. Tomographic reconstructions show that early stages of membrane remodeling take place in a target membrane-centric manner, progressing from punctate dimples, to the formation of a pinched liposomal funnel that may impinge on the apparently unperturbed viral envelope. The results suggest that the M1 matrix layer serves as an endoskeleton for the virus and a foundation for HA during membrane fusion. Fluorescence spectroscopy monitoring fusion between liposomes and virions shows that leakage of liposome contents takes place more rapidly than lipid mixing at pH 5.5. The relation of β€˜leaky' fusion to the observed prefusion structures is discussed

    Complementation of diverse HIV-1 Env defects through cooperative subunit interactions: a general property of the functional trimer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The HIV-1 Env glycoprotein mediates virus entry by catalyzing direct fusion between the virion membrane and the target cell plasma membrane. Env is composed of two subunits: gp120, which binds to CD4 and the coreceptor, and gp41, which is triggered upon coreceptor binding to promote the membrane fusion reaction. Env on the surface of infected cells is a trimer consisting of three gp120/gp41 homo-dimeric protomers. An emerging question concerns cooperative interactions between the protomers in the trimer, and possible implications for Env function.</p> <p>Results</p> <p>We extended studies on cooperative subunit interactions within the HIV-1 Env trimer, using analysis of functional complementation between coexpressed inactive variants harboring different functional deficiencies. In assays of Env-mediated cell fusion, complementation was observed between variants with a wide range of defects in both the gp120 and gp41 subunits. The former included gp120 subunits mutated in the CD4 binding site or incapable of coreceptor interaction due either to mismatched specificity or V3 loop mutation. Defective gp41 variants included point mutations at different residues within the fusion peptide or heptad repeat regions, as well as constructs with modifications or deletions of the membrane proximal tryptophan-rich region or the transmembrane domain. Complementation required the defective variants to be coexpressed in the same cell. The observed complementation activities were highly dependent on the assay system. The most robust activities were obtained with a vaccinia virus-based expression and reporter gene activation assay for cell fusion. In an alternative system involving Env expression from integrated provirus, complementation was detected in cell fusion assays, but not in virus particle entry assays.</p> <p>Conclusion</p> <p>Our results indicate that Env function does not require every subunit in the trimer to be competent for all essential activities. Through cross-talk between subunits, the functional determinants on one defective protomer can cooperatively interact to trigger the functional determinants on an adjacent protomer(s) harboring a different defect, leading to fusion. Cooperative subunit interaction is a general feature of the Env trimer, based on complementation activities observed for a highly diverse range of functional defects.</p
    • …
    corecore