30 research outputs found

    Interplay in the Selection of Fluoroquinolone Resistance and Bacterial Fitness

    Get PDF
    Fluoroquinolones are antibacterial drugs that inhibit DNA Gyrase and Topoisomerase IV. These essential enzymes facilitate chromosome replication and RNA transcription by regulating chromosome supercoiling. High-level resistance to fluoroquinolones in E. coli requires the accumulation of multiple mutations, including those that alter target genes and genes regulating drug efflux. Previous studies have shown some drug-resistance mutations reduce bacterial fitness, leading to the selection of fitness-compensatory mutations. The impact of fluoroquinolone-resistance on bacterial fitness was analyzed in constructed isogenic strains carrying up to 5 resistance mutations. Some mutations significantly decreased bacterial fitness both in vitro and in vivo. We identified low-fitness triple-mutants where the acquisition of a fourth resistance mutation significantly increased fitness in vitro and in vivo while at the same time dramatically decreasing drug susceptibility. The largest effect occurred with the addition of a parC mutation (Topoisomerase IV) to a low-fitness strain carrying resistance mutations in gyrA (DNA Gyrase) and marR (drug efflux regulation). Increased fitness was accompanied by a significant change in the level of gyrA promoter activity as measured in an assay of DNA supercoiling. In selection and competition experiments made in the absence of drug, parC mutants that improved fitness and reduced susceptibility were selected. These data suggest that natural selection for improved growth in bacteria with low-level resistance to fluoroquinolones could in some cases select for further reductions in drug susceptibility. Thus, increased resistance to fluoroquinolones could be selected even in the absence of further exposure to the drug

    Transcriptional Regulation Is a Major Controller of Cell Cycle Transition Dynamics

    Get PDF
    DNA replication, mitosis and mitotic exit are critical transitions of the cell cycle which normally occur only once per cycle. A universal control mechanism was proposed for the regulation of mitotic entry in which Cdk helps its own activation through two positive feedback loops. Recent discoveries in various organisms showed the importance of positive feedbacks in other transitions as well. Here we investigate if a universal control system with transcriptional regulation(s) and post-translational positive feedback(s) can be proposed for the regulation of all cell cycle transitions. Through computational modeling, we analyze the transition dynamics in all possible combinations of transcriptional and post-translational regulations. We find that some combinations lead to ‘sloppy’ transitions, while others give very precise control. The periodic transcriptional regulation through the activator or the inhibitor leads to radically different dynamics. Experimental evidence shows that in cell cycle transitions of organisms investigated for cell cycle dependent periodic transcription, only the inhibitor OR the activator is under cyclic control and never both of them. Based on these observations, we propose two transcriptional control modes of cell cycle regulation that either STOP or let the cycle GO in case of a transcriptional failure. We discuss the biological relevance of such differences

    A phosphatase threshold sets the level of Cdk1 activity in early mitosis in budding yeast

    No full text
    Entry into mitosis is initiated by synthesis of cyclins, which bind and activate cyclin-dependent kinase 1 (Cdk1). Cyclin synthesis is gradual, yet activation of Cdk1 occurs in a stepwise manner: a low level of Cdk1 activity is initially generated that triggers early mitotic events, which is followed by full activation of Cdk1. Little is known about how stepwise activation of Cdk1 is achieved. A key regulator of Cdk1 is the Wee1 kinase, which phosphorylates and inhibits Cdk1. Wee1 and Cdk1 show mutual regulation: Cdk1 phosphorylates Wee1, which activates Wee1 to inhibit Cdk1. Further phosphorylation events inactivate Wee1. We discovered that a specific form of protein phosphatase 2A (PP2A(Cdc55)) opposes the initial phosphorylation of Wee1 by Cdk1. In vivo analysis, in vitro reconstitution, and mathematical modeling suggest that PP2A(Cdc55) sets a threshold that limits activation of Wee1, thereby allowing a low constant level of Cdk1 activity to escape Wee1 inhibition in early mitosis. These results define a new role for PP2A(Cdc55) and reveal a systems-level mechanism by which dynamically opposed kinase and phosphatase activities can modulate signal strength

    Cks confers specificity to phosphorylation-dependent CDK signaling pathways.

    No full text
    Cks is an evolutionarily conserved protein that regulates cyclin-dependent kinase (CDK) activity. Clarifying the underlying mechanisms and cellular contexts of Cks function is critical because Cks is essential for proper cell growth, and its overexpression has been linked to cancer. We observe that budding-yeast Cks associates with select phosphorylated sequences in cell cycle-regulatory proteins. We characterize the molecular interactions responsible for this specificity and demonstrate that Cks enhances CDK activity in response to specific priming phosphosites. Identification of the binding consensus sequence allows us to identify putative Cks-directed CDK substrates and binding partners. We characterize new Cks-binding sites in the mitotic regulator Wee1 and discover a new role for Cks in regulating CDK activity at mitotic entry. Together, our results portray Cks as a multifunctional phosphoadaptor that serves as a specificity factor for CDK activity

    Multisite phosphorylation networks as signal processors for Cdk1

    No full text
    The order and timing of cell cycle events is controlled by changing substrate specificity and different activity thresholds of cyclin-dependent kinases (CDK). However, it is not understood how a single protein kinase can trigger hundreds of switches in a sufficiently time-resolved fashion. We show that the cyclin-Cdk1-Cks1-dependent phosphorylation of multisite targets in Saccharomyces cerevisiae is controlled by key substrate parameters including distances between phosphorylation sites, the distribution of serines and threonines as phospho-acceptors, and the positioning of cyclin-docking motifs. The component mediating the key interactions in this process is Cks1, the phospho-adaptor subunit of the cyclin-Cdk1-Cks1 complex. We propose that variation of these parameters within the networks of phosphorylation sites in different targets provides a wide range of possibilities for the differential amplification of Cdk1 signals, providing a mechanism to generate a wide range of thresholds in the cell cycle
    corecore