18 research outputs found

    The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland

    Get PDF
    The red fox (Vulpes vulpes) has the widest global distribution among terrestrial carnivore species, occupying most of the Northern Hemisphere in its native range. Because it carries diseases that can be transmitted to humans and domestic animals, it is important to gather information about their movements and dispersal in their natural habitat but it is difficult to do so at a broad scale with trapping and telemetry. In this study, we have described the genetic diversity and structure of red fox populations in six areas of north-eastern Poland, based on samples collected from 2002–2003. We tested 22 microsatellite loci isolated from the dog and the red fox genome to select a panel of nine polymorphic loci suitable for this study. Genetic differentiation between the six studied populations was low to moderate and analysis in Structure revealed a panmictic population in the region. Spatial autocorrelation among all individuals showed a pattern of decreasing relatedness with increasing distance and this was not significantly negative until 93 km, indicating a pattern of isolation-by-distance over a large area. However, there was no correlation between genetic distance and either Euclidean distance or least-cost path distance at the population level. There was a significant relationship between genetic distance and the proportion of large forests and water along the Euclidean distances. These types of habitats may influence dispersal paths taken by red foxes, which is useful information in terms of wildlife disease management

    Genomics and outbreak investigation: from sequence to consequence

    No full text
    Outbreaks of infection can be devastating for individuals and societies. In this review, we examine the applications of new high-throughput sequencing approaches to the identification and characterization of outbreaks, focusing on the application of whole-genome sequencing (WGS) to outbreaks of bacterial infection. We describe traditional epidemiological analysis and show how WGS can be informative at multiple steps in outbreak investigation, as evidenced by many recent studies. We conclude that high-throughput sequencing approaches can make a significant contribution to the investigation of outbreaks of bacterial infection and that the integration of WGS with epidemiological investigation, diagnostic assays and antimicrobial susceptibility testing will precipitate radical changes in clinical microbiology and infectious disease epidemiology in the near future. However, several challenges remain before WGS can be routinely used in outbreak investigation and clinical practice

    Density, climate and varying return points: an analysis of long-term population fluctuations in the threatened European tree frog.

    Get PDF
    Experimental research has identified many putative agents of amphibian decline, yet the population-level consequences of these agents remain unknown, owing to lack of information on compensatory density dependence in natural populations. Here, we investigate the relative importance of intrinsic (density-dependent) and extrinsic (climatic) factors impacting the dynamics of a tree frog (Hyla arborea) population over 22 years. A combination of log-linear density dependence and rainfall (with a 2-year time lag corresponding to development time) explain 75% of the variance in the rate of increase. Such fluctuations around a variable return point might be responsible for the seemingly erratic demography and disequilibrium dynamics of many amphibian populations
    corecore