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Abstract The geography of the Black Hills region of

South Dakota and Wyoming may limit connectivity for

many species. For species with large energetic demands

and large home ranges or species at low densities this can

create viability concerns. Carnivores in this region, such as

cougars (Puma concolor), have the additive effect of nat-

ural and human-induced mortality; this may act to decrease

long-term viability. In this study we set out to explore

genetic diversity among cougar populations in the Black

Hills and surrounding areas. Specifically, our objectives

were to first compare genetic variation and effective

number of breeders of cougars in the Black Hills during

three harvest regimes: pre (2003–2006), moderate

(2007–2010), and heavy (2011–2013), to determine if

harvest impacted genetic variation. Second, we compared

genetic structure of the Black Hills cougar population with

cougar populations in neighboring eastern Wyoming and

North Dakota. Using 20 microsatellite loci, we conducted

genetic analysis on DNA samples from cougars in the

Black Hills (n = 675), North Dakota (n = 113), and

eastern Wyoming (n = 62) collected from 2001–2013.

Here we report that the Black Hills cougar population

maintained genetic variation over the three time periods.

Our substructure analysis suggests that the maintenance of

genetic variation was due to immigration from eastern

Wyoming and possibly North Dakota.
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Introduction

By the early 1900s, the North American cougar (Puma

concolor) population had been displaced from two-thirds of

its historic range (Young and Goldman 1946). Populations

have since increased, and currently occupy the western

United States and part of southern Florida (Beier 1991;

Logan and Sweanor 2001). Several studies have suggested

habitat barriers (i.e., fragmentation and habitat degrada-

tion) can limit gene flow resulting in distinct genetic

structure among some cougar populations (Ernest et al.

2003; Mcrae et al. 2005; Loxterman 2011; Andreasen et al.

2012; Holbrook et al. 2012). In contrast, others have argued

immigration/emigration can maintain genetic variation

(Biek et al. 2006; Anderson et al. 2004) and can limit

population subdivision in wild cougar populations (Sinclair

et al. 2001; Anderson et al. 2004).

Advances in DNA analyses have enabled genetics to

play an increasingly important role in the conservation and

management of many wildlife populations (DeYoung and

Honeycutt 2005; Culver and Schwartz 2011). Genetic data

can allow for estimates of effective population size (Ne),

dispersal, inbreeding, and gene flow (Culver and Schwartz

2011), and recently has been applied to many wide-ranging

carnivore populations (e.g., Spong et al. 2000; Haag et al.

2010; Coster and Kovach 2012; Croteau et al. 2012). The
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additive effects of human-induced mortality to some North

American cougar populations may affect the genetic via-

bility of these populations; particularly those in unique

geographic regions, i.e., the Black Hills National Forest.

Historically, cougars were found throughout South

Dakota (Young and Goldman 1946), but were thought to

have been eradicated by the early 1900s (South Dakota

Mountain Lion Management Plan 2010). The Black Hills

complex is relatively small (Fig. 1) with an estimated

6703 km2 of suitable cougar habitat (Fecske 2003), and is

largely surrounded by inhospitable cougar habitat (Ander-

son et al. 2004), i.e., the Northern Great Plains. During the

late 1980s to early 1990s, reports of cougar sightings in the

Black Hills increased; some of which were eventually

verified by state biologists (South Dakota Mountain Lion

Management Plan 2010). By 2002, there was an estimated

population size of 127–149 cougars inhabiting the Black

Hills (Fecske 2003). The cougar population in the Black

Hills likely resulted from immigrants from neighboring

Wyoming populations, which either founded the current

population, or augmented a small remnant population that

persisted (Fecske 2003).

Initial genetic data suggested that the Black Hills were

founded by immigrants from north-central and southeastern

Wyoming, and that sustained gene flow had occurred

between regions (Anderson et al. 2004). By 2006, a con-

comitant study showed that cougars in the Black Hills had

maintained genetic variation, and the population was

Fig. 1 Map of Black Hills

National Forest study area

(located in western South

Dakota and northeastern

Wyoming), and of approximate

locations of North Dakota and

eastern Wyoming sample

distribution by county
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saturated (Thompson 2009) with a conservative modeled

population estimate of about 250 individuals (J. A. Jenks,

South Dakota State University, unpublished data). As a

result, South Dakota Department of Game, Fish and Parks

(SDGFP) initiated its first cougar harvest season in 2005

and harvest limits in the Black Hills Fire Protection Area

have increased steadily from 2005–2013 (Fig. 2).

The semi-isolated nature of the Black Hills could make

the Black Hills cougar population prone to deleterious

effects from potential inbreeding and increased genetic

drift (Culver and Schwartz 2011). Prolonged and intense

harvest has the potential to result in a greater loss of

genetic variation and alteration of population structure

(Allendorf et al. 2008). Thus, the objectives of this study

were to: assess and compare genetic variation (i.e.,

heterozygosity, allelic richness, effective population size)

of cougars in the Black Hills during three different harvest

regimes: pre (2001–2006), moderate (2007–2010), and

heavy (2011–2013), and examine the impact of increased

harvest on population substructure. Additionally, while

previous and current telemetry data verify cougar dispersal

out of the Black Hills into other cougar populations (e.g.,

Wyoming, Montana, Nebraska, and North Dakota;

Thompson 2009; Thompson and Jenks 2010), data con-

firming immigration into the Black Hills remains limited.

Our final objective was to compare genetic structure of

Black Hills cougars to that of neighboring cougar popula-

tions in North Dakota and eastern Wyoming, and conduct

population assignment tests to determine evidence of

immigration.

Materials and methods

Study area

We conducted our study in the Black Hills National Forest

and surrounding lands (Fig. 1), located in western South

Dakota and northeastern Wyoming. The Black Hills rep-

resent the eastern most extension of the Rocky Mountains

(Froiland 1990), encompassing approximately 8400 km2

(Fecske et al. 2004). Maximum elevation in the Blacks

Hills is 2207 m above mean sea level, with topography

consisting of rock outcrops, rolling hills, steep ridges,

canyonlands, and gulches (Froiland 1990). The most

abundant tree species occurring in the Black Hills is pon-

derosa pine (Pinus ponderosa). White spruce (Picea

glauca), aspen (Populus tremuloides), and birch (Betula

spp.) trees also are prevalent at higher elevations; burr oak

(Quercus macrocarpa) draws occur at lower elevations

(Larson and Johnson 1999). Prey species available to

cougars include: white-tailed deer (Odocoileus virgini-

anus), mule deer (O. hemionus), elk (Cervus elaphus),

bighorn sheep (Ovis canadensis), mountain goat (Oream-

nos americanus), porcupine (Erethizon dorsatum) as well

as a variety of small mammal and domestic livestock

species. The cougar is the apex predator in the Black Hills,

occurring sympatrically with bobcat (Lynx rufus) and

coyote (Canis latrans). The Black Hills is surrounded by

the Northern Great Plains. The closest breeding cougar

populations occur in the Pine Ridge region, Nebraska

(48 km southeast), Badlands, North Dakota (120 km north/

northwest), Laramie Range, Wyoming (160 km south-

west), and the Bighorn Mountains, Wyoming (200 km

west; Thompson and Jenks 2010).

Capture methods

From 1 January 2003–1 January 2013, we captured cougars

primarily with the use of trained hounds; however, we also

utilized walk-in live traps, foot-hold traps, and leg-hold

traps (Logan et al. 1999). We immobilized cougars with a

mixture of telazol (5.0 mg/kg) and xylazine (1.0 mg/kg;

Kreeger and Armeno 2007) based on estimated live animal

body weight via dart rifle (Dan-Inject, Børkop, Denmark,

EU). We weighed, measured, sexed, and estimated age of

cougars by tooth wear and pelage characteristics (Anderson

and Lindzey 2000). We collected blood samples for genetic

analysis from all captured cougars and fitted them with

VHF (Telonics MOD-500 (NH), Inc., Mesa, Arizona,

USA) or GPS (ATS G2110E, Inc. Isanti, Minnesota, USA;

Northstar D-cell, King George, Virginia, USA) radio col-

lars. Immobilized cougars were reversed with 0.125 mg/kg

yohimbine, released on site, and observed from a distance

to ensure safe recovery. We collected tissue samples from

cougars within the Black Hills, South Dakota, from harvest

and non-harvest related mortalities. We collaborated with

the Wyoming Game and Fish Department to obtain tissue

samples collected during 2011–2013 biopsy darting and

harvest from cougars in the Wyoming portion of the Black

Hills, as well from other eastern regions of Wyoming (i.e.,
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Fig. 2 South Dakota cougar harvest from 2005–2013
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Casper, Sheridan, and Laramie). Additionally, we collab-

orated with the North Dakota Game and Fish Department

to obtain tissue samples collected from 2003–2012 from

harvest, non–harvest related mortalities, and live captures.

All animal capture procedures were approved by the South

Dakota State University Animal Care and Use Committee

(Approval number 11-078A) and followed recommenda-

tions of the American Society of Mammalogists (Sikes and

Gannon 2011).

Genetic analysis

DNA extraction and genetic analysis was conducted at the

National Genomics Center for Wildlife and Fish Conser-

vation, United States Forest Service, Rocky Mountain

Research Station (Missoula, Montana, USA). Samples

were analyzed at 20 microsatellite loci used in previous

studies on cougars (Menotti-Raymond and O’Brien 1995;

Menotti-Raymond et al. 1999): Fca43, Fca57, Fca77,

Fca90, Fca96, Fac132, Fca559, Fca176, Fca35, Lc109,

Fca391, Fca08, Fca30, Fca82, Fca149, PcoA208, PcoB10,

PcoC112, PcoB210, PcoC108. Genomic DNA from blood

and tissue was extracted with the Dneasy Tissue Kit (Qi-

agen, Inc., Valencia, CA, USA). Polymerase chain reaction

(PCR) volume (10 ll) contained 1.0 ml DNA, 19 reaction

buffer (Applied Biosystems, Foster City, CA, USA),

2.0 mM MgCl2, 200 mM of each dNTP, 1 mM reverse

primer, 1 mM dye-labeled forward primer, 1.5 mg/ml

BSA, and 1U Taq polymerase (Applied Biosystems). The

PCR profile was 94 �C/5 min, ([94 �C/1 min, 55 �C/1 min,

72 �C/30 s] 9 36 cycles). The resultant products were

visualized on a LI-COR DNA analyzer (LI-COR

Biotechnology). We tested for genotyping error using

program DROPOUT (McKelvey and Schwartz 2005) fol-

lowing Schwartz et al. (2006).

We grouped individuals into cohorts based on birth year,

which were subsequently categorized under the appropriate

harvest regime (pre, moderate, and heavy). Cougars can

breed as early as 2 years of age; thus, we used a 2 year

sliding window approach to avoid the inclusion of parents

and offspring in the same cohort. We calculated observed

(HO) and expected (HE) heterozygosity, effective alleles

(Ae), and tested for deviations from Hardy–Weinberg

equilibrium (HWE) using GenAlEx 6.5 (Peakall and

Smouse 2006, 2012) and Genepop (Raymond and Rousset

1995; Rousset 2008). To account for variation in sample

size we used HPRARE 1.0 (Kalinowski 2005), which uses

rarefied measures to calculate allelic richness (Ar). Most

methods used to estimate effective population size (Ne)

assume discrete generations, which can cause severe bias

for species with overlapping generations (Luikart et al.

2010), such as cougars. However, if a single cohort is

sampled, effective population size can be estimated as

effective number of breeders (Schwartz et al. 1998; Waples

2005). Therefore, we estimated effective population size as

the effective number of breeding individuals (from here on

referred to as NB) genetically contributing to the population

(Waples and Teel 1990; Waples 2005). We calculated NB

for each cohort using a bias correction method based on

linkage disequilibrium (Hill 1981; Waples 2006; Waples

and Do 2010), as implemented by NeEstimator V2 (Do

et al. 2014). Statistical analysis among cohorts and harvest

regimes was determined using an ANOVA in the R sta-

tistical program (R Core Team 2015).

We examined population structure between Black Hills,

eastern Wyoming, and North Dakota cougar populations

from 2003–2013 using STRUCTURE (Pritchard et al.

2000). We used Geneclass2 (Piry et al. 2004) and

STRUCTURE (Pritchard et al. 2000) to conduct population

assignment tests to determine immigration between the

Black Hills and North Dakota cougar populations using

samples from 2001–2013. Finally, we assessed overall

genetic variation and population structure for cougars in

the Black Hills, eastern Wyoming (i.e., Casper, Sheridan,

and Laramie) and North Dakota using individuals from the

same birth period (2011–2013) to alleviate temporal

effects. We used the R statistical program (R Core Team

2015) diveRsity to determine FST values between the three

populations, and performed Fisher’s exact test between the

Black Hills and eastern Wyoming populations to test for

panmixia (Keenan et al. 2013).

Geneclass2 assigns/excludes individuals using prede-

fined population subdivision based on different genetic

assignment criteria (Piry et al. 2004). We employed the

frequency based method (Paetkau et al. 1995) using the

Monte Carlo resampling method with 1000 simulated

individuals and an alpha of 0.01 (Paetkau et al. 2004).

STRUCTURE uses both allele frequency and a Bayesian

model-based clustering method to infer population struc-

ture on the basis of genotypes (Pritchard et al. 2000). To

infer population structure, we excluded available geo-

graphic information, and assumed individuals had mixed

ancestry (admixture model) and correlated allele frequen-

cies. We set both burn-in periods to 10,000 and evaluated

1–10 possible genetic clusters (K), with three iterations. To

select the appropriate number of genetic clusters (K), we

used Structure Harvester, which collates STRUCTURE

results (Earl and vonHoldt 2012) to determine the most

suitable K using the Evanno method (Evanno et al. 2005).

Results

We analyzed 675 unique genotypes from Black Hills

cougars (pre-harvest: n = 288; moderate harvest: n = 289;

and heavy harvest: n = 98), 113 unique genotypes from

382 Conserv Genet (2016) 17:379–388
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North Dakota cougars, and 62 unique genotypes from

eastern Wyoming cougars at 20 microsatellite loci. We

observed no significant difference in observed (P = 0.473)

or expected (P = 0.886) heterozygosity levels, allelic

richness (P = 0.764), or effective alleles (P = 0.745) in

cougars in the Black Hills under different harvest regimes

(Table 1). Significant deviations from HWE occurred at

PcoB10 (P\ 0.05) during the pre-harvest regime, Fca90

(P\ 0.05), Fca149 (P\ 0.05), and Pco108 (P\ 0.05)

during the moderate harvest regime, and at Bco210

(P\ 0.05) during the heavy harvest regime. We found

effective population (NB) size ranged from a low of 38

(28–55; 95 % CI) pre-harvest and a high of 98 (70–150;

95 % CI) moderate harvest, before declining to 62

(42–106; 95 % CI) heavy harvest (Table 2).

STRUCTURE analysis for Black Hills, eastern Wyom-

ing, and North Dakota resulted in a K = 3 (mean Ln

P(K) = -37,526.6; Fig. 3), when excluding prior popula-

tion information. Plotting these results geographically

indicated there was more genetic similarity between Black

Hills and eastern Wyoming cougars, in comparison to

North Dakota cougars. Hierarchical analysis using samples

only from the Black Hills and eastern Wyoming resulted in

a K = 2 (mean Ln P(K) = -31,844.8; Fig. 4) with no

obvious geographic structuring. STRUCTURE analysis for

Table 1 Estimates (at 20 loci)

of observed (HO) and expected

(HE) heterozygosity, allelic

richness (Ar), and number of

effective alleles (Ae) of Black

Hills cougars by cohort year

under different harvest regimes:

pre (2001–2006), moderate

(2007–2010), and heavy

(2011–2013)

Genetic variation of Black Hills cougars by cohort

Harvest regime Cohort year N HO HE Ar Ae

Pre-harvest 2001–2002 56 Mean 0.56 0.55 4.07 2.49

SE 0.04 0.04 0.35 0.17

2002–2003 76 Mean 0.57 0.56 4.02 2.57

SE 0.04 0.04 0.34 0.18

2003–2004 96 Mean 0.56 0.56 4.01 2.56

SE 0.04 0.04 0.32 0.17

2004–2005 117 Mean 0.57 0.55 3.95 2.51

SE 0.04 0.04 0.31 0.16

2005–2006 132 Mean 0.56 0.55 3.93 2.53

SE 0.04 0.04 0.33 0.17

Moderate harvest 2006–2007 149 Mean 0.57 0.56 4.01 2.60

SE 0.05 0.04 0.31 0.18

2007–2008 146 Mean

SE

0.56

0.05

0.56

0.04

3.94

0.31

2.57

0.18

2008–2009 142 Mean 0.54 0.55 3.86 2.52

SE 0.04 0.04 0.32 0.18

2009–2010 138 Mean 0.55 0.55 3.97 2.51

SE 0.04 0.04 0.30 0.17

Heavy harvest 2010–2011 110 Mean 0.55 0.55 3.98 2.51

SE 0.04 0.04 0.30 0.17

2011–2012 79 Mean 0.55 0.56 3.90 2.57

SE 0.04 0.04 0.31 0.18

2012–2013 52 Mean 0.54 0.55 3.99 2.50

SE 0.04 0.04 0.33 0.17

N indicates sample size

Table 2 Effective number of breeders (NB) by cohort year under

different harvest regimes: pre (2001–2006), moderate (2007–2010),

and heavy (2011–2013)

Harvest regime Cohort year N NB 95 % CI

Pre-harvest 2001–2002 57 38 28–55

2002–2003 77 41 32–55

2003–2004 97 41 34–51

2004–2005 119 70 56–91

2005–2006 134 80 66–100

Moderate harvest 2006–2007 151 78 64–97

2007–2008 149 78 62–94

2008–2009 145 106 82–145

2009–2010 140 112 81–163

Heavy harvest 2010–2011 111 93 68–135

2011–2012 80 80 57–121

2012–2013 53 76 52–132

N indicates sample size
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Black Hills and North Dakota populations resulted in a

K = 2 (mean Ln P(K) = -36,200.6; Fig. 5), but suggested

geographic structuring into a Black Hills and a North

Dakota group. We used these results to confirm immigra-

tion of cougars (n = 2) into the Black Hills from North

Dakota, as well as emigration out of the Black Hills

(n = 6) into North Dakota, based on 98 % ancestry in the

Black Hills cluster (Table 3). Results from Geneclass2

allowed assignment of two cougars to North Dakota that

were originally sampled from the Black Hills cougar

population; these individuals were the same as those

identified by STRUCTURE. However, we were only able

to assign four cougars (of the six identified by STRUC-

TURE) to the Black Hills population that were originally

sampled from North Dakota, based on a[85 % probability

(Table 3).

Genetic variation between the three populations was

comparable (Table 4), and we observed no significant

difference in observed (P = 0.605) or expected

(P = 0.617) heterozygosity, allelic richness (P = 0.261),

or effective alleles (P = 0.296). While we found no sig-

nificant deviations from HWE in the Wyoming cougar

population, we found deviations from HWE at Fca132

(P\ 0.05), Fca391 (P\ 0.05), and PcoA208 (P\ 0.05) in

the North Dakota cougar population. There were 96 alleles

in Black Hills, 64 alleles in North Dakota, and 86 alleles in

the eastern Wyoming cougar population, as well as alleles

unique to the Black Hills (n = 2), North Dakota (n = 3),

and eastern Wyoming population (n = 6). Overall, FST
between Black Hills and North Dakota was 0.10

(0.07–0.13; 95 % CI), 0.07 (0.04–0.09; 95 % CI) between

North Dakota and eastern Wyoming, and 0.03 (0.02–0.04;

95 % CI) between Black Hills and eastern Wyoming

(Table 5); thus, indicating population differentiation, as

confidence intervals do not incorporate zero. Fisher’s exact

Fig. 3 Population structure of Black Hills (red and blue), eastern

Wyoming (red and blue), and North Dakota (green) cougars inferred

by STRUCTURE, K = 3. Populations are divided by a vertical black

line. Each individual is represented by a single column, where the

color(s) of the column represent degree of similarity to each

population

Fig. 4 Population structure of Black Hills (red and green) and

eastern Wyoming (red and green), cougars inferred by STRUCTURE,

K = 2. Populations are divided by a vertical black line. Each

individual is represented by a single column, where the color(s) of the

column represent degree of similarity to each population

Fig. 5 Population structure of Black Hills (red) and North Dakota (green) cougars inferred by STRUCTURE, K = 2. Each individual is

represented by a single column, where the color(s) of the column represent degree of similarity to each population

Table 3 Population assignment

of Black Hills and North Dakota

cougars using STRUCTURE

and Geneclass2 during

2001–2013

Population sampled # Sampled STRUCTURE Geneclass2

Black Hills North Dakota Black Hills North Dakota

Black Hills 675 673 2 673 2

North Dakota 113 6 107 4 109

384 Conserv Genet (2016) 17:379–388
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test between Black Hills and eastern Wyoming revealed a

significant difference (P\ 0.05) at all but 6 loci.

Discussion

Our results indicate that cougars in the Black Hills have

maintained genetic variability despite the semi-isolated

nature of the region, years of increasing harvest, and har-

vest pressure from both South Dakota and Wyoming.

Multiple measures of genetic variation (i.e., heterozygosity

and allelic richness), confirm that Black Hills cougars have

maintained genetic variability since the pre-harvest period

(Thompson 2009), though we acknowledge that simula-

tions would provide further insight on the processes

observed. We found no significant difference in heterozy-

gosity and allelic richness in our cohort analysis across the

three harvest regimes: pre–harvest, moderate harvest, and

heavy harvest (Table 1), despite the populations’ recent

decrease in size from its highest estimate of approximately

250 individuals (Fig. 6). Observed heterozygosity for

Black Hills cougars was similar to that of other cougar

populations in the western United States, i.e., Texas,

Wyoming, Colorado, Utah, Arizona, New Mexico, and

Idaho (HO 0.52–0.61; Walker et al. 2000; Anderson et al.

2004; Mcrae et al. 2005; Loxterman 2011; Holbrook et al.

2012), and paralleled other studies (Sinclair et al. 2001;

Anderson et al. 2004) that found no evidence of population

subdivision. Though measures of genetic variation indicate

this population has retained genetic viability, we recognize

that unlike demographic effects, which are immediate and

more recognizable, genetic effects occur over many gen-

erations and therefore, may not be apparent for several

generations (Harris et al. 2012).

Loss of genetic diversity has been documented in some

wild populations following decreases in population size

and/or Ne [African elephant, Loxodonta africana africana,

Whitehouse and Harley (2001); mountain goat, Oreamnos

americanus, Ortego et al. (2011); Saimaa ringed seal,

Phoca hispida saimensis, Valtonen et al. (2012); Far

eastern leopard, Panthera pardus orientalis, Sugimoto

et al. (2014)]. Other studies of wild populations found

either no reduction in genetic diversity [coyote, Canis

latrans, Williams et al. (2003); Kerguelen mouflon, Ovis

aries, Kaeuffer et al. (2007)], or occasionally even an

increase in diversity that resulted from increased immi-

gration [great reed warblers, Acrocephalus arundinaceus,

Hansson et al. (2000)]. Williams et al. (2003) found dis-

persal/immigration preserved genetic variation in a coyote

population despite decades of intensive removal. Our

cohort estimates of NB (Table 2; Fig. 6) reflected the

changes in estimated population size corresponding to the

harvest regimes, with lower estimates during the pre- and

heavy harvest regimes, and higher estimates during the

moderate harvest regime. Although NB decreased during

the heavy harvest regime, estimates were similar if not

higher than pre–harvest NB estimates. Thus, it is likely that

a combination of dispersal and immigration and relatively

stable NB, has resulted in genetic maintenance in Black

Hills cougars across the three harvest regimes. However,

we believe that additional genetic monitoring is warranted

to monitor the recent decline observed in NB to ensure this

is not a continuing trend.

Wright (1978) suggested that an FST value between 0

and 0.05 indicates little genetic differentiation; based on

FST (Table 5), South Dakota and eastern Wyoming cougar

populations were more closely related in comparison to

North Dakota cougars. Furthermore, STRUCTURE results

(Fig. 3) and the similarity in genetic variability at 20

microsatellite loci (Table 3) between South Dakota and

eastern Wyoming cougars would suggest that these

Table 4 Mean and standard

error of genetic variability of

Black Hills, North Dakota, and

eastern Wyoming cougars

during 2011–2013

Black Hills North Dakota Eastern Wyoming

N 98 25 37

Mean SE Mean SE Mean SE

HO 0.54 0.04 0.52 0.04 0.56 0.04

HE 0.55 0.04 0.52 0.04 0.57 0.04

Ar 3.74 0.30 3.40 0.24 4.06 0.31

# Alleles 96 0.41 64 0.13 86 0.50

Effective alleles/locus 2.52 0.18 2.25 0.13 2.62 0.19

Table 5 Estimation of population subdivision (FST) between Black

Hills (n = 98), North Dakota (n = 25), and eastern Wyoming

(n = 45) cougar populations during 2011–2013

Overall FST

Black Hills North Dakota Eastern Wyoming

0.10* – – North Dakota

0.03 0.07* – Eastern Wyoming

Significant FST values indicated by * (P\ 0.05)
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populations may be acting as a large population as postu-

lated by Anderson et al. (2004). STRUCTURE analysis

between Black Hills and eastern Wyoming also depicted

little genetic differentiation (Fig. 4). Though Fisher’s exact

test revealed statistical significance at 14 loci, rejecting

panmixia; this is likely a reflection of the number of unique

alleles in the Wyoming cougar population (n = 6) than in

the Black Hills population (n = 2). However, a more

thorough assessment of the population structure of

Wyoming cougars using a larger sample size may provide

more insight.

Although Black Hills cougars likely colonized the North

Dakota Badlands, there seems to be genetic differentiation

between the two Dakota populations, as evidenced by

genetic variability results (Tables 4 and 5) and population

assignment tests (Table 3). This differentiation in the North

Dakota population likely resulted from genetic drift within

and/or immigration from other cougar populations, such as

Montana, which has been documented (Wilkens 2014). In

addition, we were able to assign individual cougars to

either North Dakota or South Dakota populations with

relatively high probabilities ([85 %); confirming both

immigration into the Black Hills from neighboring cougar

populations, and emigration from the Black Hills into

North Dakota. Our results also suggest eastern Wyoming

and South Dakota experience a higher frequency of cougar

movements (emigration and immigration) compared to the

North Dakota population.

Regardless of habitat barriers that may limit dispersal

movements among populations (McRae et al. 2005), such

constraints are not preventing cougar dispersal movements

out of or into the Black Hills (Thompson and Jenks 2010).

Several radio marked individuals from this project were

documented dispersing from the Black Hills into North

Dakota, Wyoming, and Montana. Additionally, we docu-

mented immigration into the South Dakota portion of the

Black Hills from an ear-tagged Wyoming cougar. Popu-

lation immigration likely has sustained the genetic vari-

ability of Black Hills cougars, as dispersal facilitates

transfer of genetic material, thereby maintaining geneti-

cally healthy populations (Logan and Sweanor 2001; Sin-

clair et al. 2001; Anderson et al. 2004; Biek et al. 2006).

Moreover, no clinical signs of inbreeding depression (e.g.,

crooked tails, cowlicks) have been documented in cougars

in the Black Hills (Thompson 2009; Jansen 2011; Juarez

2014).

Conservation and management implications

Genetic assessment of the Black Hills cougar population

revealed that the population has maintained genetic via-

bility likely as a result of compensatory emigration/immi-

gration, during years of increased harvest. However, we

recommend continued genetic monitoring of cougars in the

Black Hills every 3–5 years given that genetic changes

occur on an evolutionary time scale (i.e., over many gen-

erations; Harris et al. 2012). The cougar populations

evaluated in this study may not show genetic effects of

harvest pressure and decreasing population size for several

generations. As cougars in the Black Hills experience

harvest pressure from both South Dakota and Wyoming,

continued genetic monitoring is warranted (Schwartz et al.

2007). Furthermore, because cougars in North Dakota and

other regions in Wyoming also are experiencing harvest,

continued assessment of genetic variation between the

three neighboring cougar populations will be important.

Dispersal of Black Hills cougars has been documented to
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North Dakota, Wyoming, Montana, Nebraska, Oklahoma,

and Minnesota (Thompson 2009; Thompson and Jenks

2010), which illustrates the difficulty of managing cougars

within agency boundaries. Therefore, because cougars do

not adhere to state boundaries we also recommend a large

scale cougar database, which could provide an effective

means for collaboration among management agencies to

continue to successfully maintain healthy populations of

the North American cougar.
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