69 research outputs found

    Fatigue crack growth in inhomogeneous steel components

    Get PDF
    presentazione orale al TMS 2009 Annual Meeting & Exhibition (TMS2009), San francisco, CA, USA, 15/2/2008 - 19/2/200

    Infrared Thermography for Investigation of Surface Quality in Dry Finish Turning of Ti6Al4V

    Get PDF
    The machining of titanium alloys always raises issues because of their peculiar chemical and physical characteristics as compared to traditional steel or aluminum alloys. A proper selection of parameters and their monitoring during the cutting operation makes it possible to minimize the surface roughness and cutting force. In this experimental study, infrared thermography was used as a control parameter of the surface roughness of Ti6A4V in dry finish turning. An analysis of variance was carried out to determine the effect of the main cutting parameters (cutting speed and feed rate) on the surface roughness and cutting temperature. In the examined range of the machining parameters, cutting speed and feed were found to have a primary effect on the surface roughness of the machined parts. Cutting speed also significantly affected the temperature of the cutting region, while feed was of second order. Higher cutting speeds and intermediate feed values gave the best surface roughness. A regression analysis defined some models to relate the cutting temperature and surface roughness to the machining parameters. Infrared thermography demonstrated that the cutting temperature could be related to roughness

    Data Collection for Traffic and Drivers’ Behaviour Studies: A Large-scale Survey

    Get PDF
    AbstractStudies of driving behaviour are of great help for different tasks in transportation engineering. These include data collection both for statistical analysis and for identification of driving models and estimation of modelling parameters (calibration). The data and models may be applied to different areas: i) road safety analysis; ii) microscopic models for traffic simulation, forecast and control; iii) control logics aimed at ADAS (Advanced Driving Assistance Systems). In this paper we present a large survey based on the naturalistic (on-the-road) observation of driving behaviour with a view to obtaining microscopic data for single vehicles on long road segments and for long time periods. Data are collected by means of an instrumented vehicle (IV), equipped with GPS, radar, cameras and other sensors. The behaviour of more than 100 drivers was observed by using the IV in active mode, that is by observing the kinematics imposed on the vehicle by the driver, as well as the kinematics with respect to neighbouring vehicles. Sensors were also mounted backwards on the IV, allowing the behaviour of the driver behind to be observed in passive mode. As the vehicle behind changes, the next is observed and within a short period of time the behaviour of several drivers can be examined, without the observed driver being aware. The paper presents the experiment by describing the road context, aims and experimental procedure. Statistics and initial insights are also presented based on the large amount of data collected (more than 8000km of observed trajectories and 120hours of driving in active mode). As an example of how to use the data directly, apart from calibration of driving behaviour models, indexes based on aggregate measures of safety are computed, presented and discussed

    Room temperature plastic flow localization in a Mn-alloyed austenitic steel

    Get PDF
    A fully austenitic steel containing 0.5 wt.% C and 22 wt.% Mn was recently proposed for the fabrication of automotive body structures by room-temperature sheet forming, the goal being weight reduction and better crash performance owing to its much higher yield stress and elongation (as compared to presently employed ferritic and multiphase steels). Full-thickness tensile specimens, cut from as-produced sheets, were polished and tested at different strain rates, and the macroscopic surface relief eventually induced by the plastic deformation was recorded with a video camera. Between 0.3 and 0.4 true strain, successive macroscopic deformation bands (forming about 45° angle with the tensile axis and involving the full specimen width) travel along the specimen, a new one being nucleated as the previous reaches one of the specimen heads, whereas the gage displacement vs. stress curve shows a series of steps, each corresponding to the transit of a band through the gage length, and the cross-head displacement vs. stress curve shows isolated stress peaks, each immediately preceding the nucleation of a new band. Afterwards, and up to rupture, a series of stationary deformation bands appear, most being immediately adjacent to the preceding ones, with the stress vs. strain curve showing a series of serrations with large stress drops. As the strain rate is increased from 0.0004 to 0.4 s-1, the overall flow stress slightly decreases and the mentioned plastic localization phenomena become less evident

    Influence of the microstructure on fatigue and fracture toughness properties of large heat-treated mold steels

    Get PDF
    The standard ISO 1.2738 medium-carbon low-alloy steel has long been used to fabricate plastic molds for injection molding of large automotive components, such as bumpers and dashboards. These molds are usually machined from large pre-hardened steel blooms. Due to the bloom size, the heat treatment yields mixed microstructures, continuously varying from surface to core. Negative events (such as microcracks due to improper weld bed deposition or incomplete extraction of already formed plastic objects) or too large thermal/mechanical stresses can conceivably cause mold failure during service due to the low fracture toughness and fatigue resistance typically encountered in large slack quenched and tempered ISO 1.2738 steel blooms. Alternative steel grades, including both non-standard microalloyed steels, designed for the same production process, and precipitation hardening steels, have recently been proposed by steelworks. However, the fracture toughness and the fatigue properties of these steels, and hence their response during the service, are not well known. Results of an experimental campaign to assess the fracture toughness and fatigue properties, as well as the basic mechanical properties, of a microalloyed and a precipitation hardening plastic mold steel blooms are presented and commented, also in respect to the results previously obtained by two commercial ISO 1.2738 ones. Experimental results show that these steels generally exhibit low fracture toughness values; in the traditional quenched and tempered bloom steels the brittleness may be caused both by the presence of mixed microstructures and by grain boundaries segregation, while in the precipitation hardened one the brittleness probably stems from the precipitation phenomena. This study suggests that microalloyed and precipitation hardening steels may be used to produce large plastic mold, yet the fracture toughness still remains the most critical propert

    Plastic localization phenomena in a Mn-alloyed austenitic steel

    Get PDF
    A 0.5 wt pct C, 22 wt pct Mn austenitic steel, recently proposed for fabricating automotive body structures by cold sheet forming, exhibits plastic localizations (PLs) during uniaxial tensile tests, yet showing a favorable overall strength and ductility. No localization happens during biaxial Erichsen cupping tests. Full-thickness tensile and Erichsen specimens, cut from as-produced steel sheets, were polished and tested at different strain rates. During the tensile tests, the PL phenomena consist first of macroscopic deformation bands traveling along the tensile axis, and then of a series of successive stationary deformation bands, each adjacent to the preceding ones; both types of bands involve the full specimen width and yield a macroscopically observable surface relief. No comparable surface relief was observed during the standard Erichsen tests. Because the stress state is known to influence PL phenomena, reduced-width Erichsen tests were performed on polished sheet specimens, in order to explore the transition from biaxial to uniaxial loading; surface relief lines were observed on a 20-mm-wide specimen, but not on wider ones

    Characteristics of the colorectal cancers diagnosed in the early 2000s in Italy. Figures from the IMPATTO study on colorectal cancer screening

    Get PDF
    The impact of organized screening programmes on colorectal cancer (CRC) can be observed at a population level only several years after the implementation of screening. We compared CRC characteristics by diagnostic modality (screen-detected, non-screen-detected) as an early outcome to monitor screening programme effectiveness. Data on CRCs diagnosed in Italy from 2000 to 2008 were collected by several cancer registries. Linkage with screening datasets made it possible to divide the cases by geographic area, implementation of screening, and modality of diagnosis (screen-detected, non-screen-detected).We compared the main characteristics of the different subgroups of CRCs through multivariate logistic regression models. The study included 23,668 CRCs diagnosed in subjects aged 50-69 years, of which 11.9%were screendetected (N=2,806), all from the North-Centre of Italy. Among screen-detected CRCs, we observed a higher proportion of males, of cases in the distal colon, and a higher mean age of the patients. Compared with pre-screening cases, screen-detected CRCs showed a better distribution by stage at diagnosis (OR for stage III or IV: 0.40, 95%CI: 0.36-0.44) and grading (OR for poorly differentiated CRCs was 0.86, 95%CI: 0.75-1.00). Screen-detected CRCs have more favourable prognostic characteristics than non-screen-detected cases. A renewed effort to implement screening programmes throughout the entire country is recommended

    Friction stir welding of aluminum alloys and steels: Issues and solutions

    No full text
    Welding of aluminum alloys and steels by conventional fusion welding technology is difficult because of their different mechanical, chemical, and physical properties. Alternatively, friction stir welding (FSW) could be a solution as materials are joined in a solid state. However, FSW has some issues and drawbacks. The possible formation of brittle Al–Fe intermetallic compounds deteriorates mechanical joint strength. Improper process parameters, such as rotational and welding speed, could generate insufficient and/or inadequate materials intermixing. Therefore, defects like incomplete penetration, tunnel, surface grooves, surface galling, and kissing bond can form. Tool geometry (e.g. tool pin profile and shoulder) drives the uniformity of heat input and intermixing pattern inside weld joint. Tool wear is not capable of producing a homogenous heat and an adequate intermixing, thus voids and/or flashes can occur. To overcome the above-mentioned issues, a proper selection of process parameters, tool geometry and materials should be employed to ensure an adequate heat input and intermixing to join successfully aluminum and steel sheets. This article is a short review about the main issues related to FSW of aluminum and steels sheets and possible solutions
    • …
    corecore