3,401 research outputs found

    Student Newspaper Funding Issues on Public University Campuses in Ohio: Higher Education Administrators vs. Student Journalists

    Get PDF
    Cases of college and university administrators using funding for student publications as a mechanism to attempt to exercise control over student media arise on a fairly steady basis (Hapney & Russo, 2013). Occasionally, this comes in the form of student government associations that defund student newspapers in retaliation for reportage. Usually, funding provided by administrators and student government associations is not a license to control student newspapers on public university campuses, in particular (2013). Struggles and conflict between university administrators and student journalists over who controls student newspapers in Ohio is evident— including the issue of funding (Hapney & Lucas, 2014a). This article begins with a review of the relevant literature associated with student newspaper budget cuts carried out by college and university administrators, including an examination of the important federal and Supreme Court cases associated with this scenario. It also outlines the method used in examining budgetary issues on four public university campuses in the state of Ohio. The views of university administrators, faculty members, and student journalists at these universities are outlined. It concludes with ideology in relation to a continual issue with which administrators, faculty members, and student journalists contend

    Two-dimensional Quantum-Corrected Eternal Black Hole

    Get PDF
    The one-loop quantum corrections to geometry and thermodynamics of black hole are studied for the two-dimensional RST model. We chose boundary conditions corresponding to the eternal black hole being in the thermal equilibrium with the Hawking radiation. The equations of motion are exactly integrated. The one of the solutions obtained is the constant curvature space-time with dilaton being a constant function. Such a solution is absent in the classical theory. On the other hand, we derive the quantum-corrected metric (\ref{solution}) written in the Schwarzschild like form which is a deformation of the classical black hole solution \cite{5d}. The space-time singularity occurs to be milder than in classics and the solution admits two asymptotically flat black hole space-times lying at "different sides" of the singularity. The thermodynamics of the classical black hole and its quantum counterpart is formulated. The thermodynamical quantities (energy, temperature, entropy) are calculated and occur to be the same for both the classical and quantum-corrected black holes. So, no quantum corrections to thermodynamics are observed. The possible relevance of the results obtained to the four-dimensional case is discussed.Comment: Latex, 28 pges; minor corrections in text and abstract made and new references adde

    Quantum cosmology in the models of 2d and 4d dilatonic supergravity with WZ matter

    Get PDF
    We consider N=1 two-dimensional (2d) dilatonic supergravity (SG), 2d dilatonic SG obtained by dimensional reduction from N=1 four-dimensional (4d) SG, N=2 2d dilatonic SG and string-inspired 4d dilatonic SG. For all the theories, the corresponding action on a bosonic background is constructed and the interaction with NN (dilatonic) Wess-Zumino (WZ) multiplets is presented. Working in the large-N approximation, it is enough to consider the trace anomaly induced effective action due to dilaton-coupled conformal matter as a quantum correction (for 2d models s-waves approximation is additionally used). The equations of motion for all such models with quantum corrections are written in a form convenient for numerical analysis. Their solutions are numerically investigated for 2d and 4d Friedmann-Robertson-Walker (FRW) or 4d Kantowski-Sacks Universes with a time-dependent dilaton via exponential dilaton coupling. The evolution of the corresponding quantum cosmological models is given for different choices of initial conditions and theory parameters. In most cases we find quantum singular Universes. Nevertheless, there are examples of Universe non-singular at early times. Hence, it looks unlikely that quantum matter back reaction on dilatonic background (at least in large NN approximation) may really help to solve the singularity problem.Comment: LaTeX file of the text (36 pages) and 3 ps files of 14 figures, few misprints are corrected and references adde

    Electrostatically confined Quantum Rings in bilayer Graphene

    Full text link
    We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B0B_{0}) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B0B0B_0 \to -B_0 transformation and, for a fixed total angular momentum index mm, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anti-crossings, which arise due to the overlap of gate-confined and magnetically-confined states.Comment: 5 pages, 6 figures, to appear in Nano Letter

    Matrix Black Holes

    Get PDF
    Four and five dimensional extremal black holes with nonzero entropy have simple presentations in M-theory as gravitational waves bound to configurations of intersecting M-branes. We discuss realizations of these objects in matrix models of M-theory, investigate the properties of zero-brane probes, and propose a measure of their internal density. A scenario for black hole dynamics is presented.Comment: 26 pages, harvmac; a few more references and additional comment

    Spinning strings and integrable spin chains in the AdS/CFT correspondence

    Get PDF
    In this introductory review we discuss dynamical tests of the AdS_5 x S^5 string/N=4 super Yang-Mills duality. After a brief introduction to AdS/CFT we argue that semiclassical string energies yield information on the quantum spectrum of the string in the limit of large angular momenta on the S^5. The energies of the folded and circular spinning string solutions rotating on a S^3 within the S^5 are derived, which yield all loop predictions for the dual gauge theory scaling dimensions. These follow from the eigenvalues of the dilatation operator of N=4 super Yang-Mills in a minimal SU(2) subsector and we display its reformulation in terms of a Heisenberg s=1/2 spin chain along with the coordinate Bethe ansatz for its explicit diagonalization. In order to make contact to the spinning string energies we then study the thermodynamic limit of the one-loop gauge theory Bethe equations and demonstrate the matching with the folded and closed string result at this loop order. Finally the known gauge theory results at higher-loop orders are reviewed and the associated long-range spin chain Bethe ansatz is introduced, leading to an asymptotic all-loop conjecture for the gauge theory Bethe equations. This uncovers discrepancies at the three-loop order between gauge theory scaling dimensions and string theory energies and the implications of this are discussed. Along the way we comment on further developments and generalizations of the subject and point to the relevant literature.Comment: 40 pages, invited contribution to Living Reviews in Relativity. v2: improvements in the text and references adde

    Solar Dynamics Observatory Launch and Commissioning

    Get PDF
    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010. Over the next three months, the spacecraft was raised from its launch orbit into its final geosynchronous orbit and its systems and instruments were tested and calibrated in preparation for its desired ten year science mission studying the Sun. A great deal of activity during this time involved the spacecraft attitude control system (ACS); testing control modes, calibrating sensors and actuators, and using the ACS to help commission the spacecraft instruments and to control the propulsion system as the spacecraft was maneuvered into its final orbit. This paper will discuss the chronology of the SDO launch and commissioning, showing the ACS analysis work performed to diagnose propellant slosh transient and attitude oscillation anomalies that were seen during commissioning, and to determine how to overcome them. The simulations and tests devised to demonstrate correct operation of all onboard ACS modes and the activities in support of instrument calibration will be discussed and the final maneuver plan performed to bring SDO on station will be shown. In addition to detailing these commissioning and anomaly resolution activities, the unique set of tests performed to characterize SDO's on-orbit jitter performance will be discussed
    corecore