37 research outputs found

    Neural Correlates of Shooting Sports Performance: A Systematic Review on Neural Efficiency Hypothesis

    Get PDF
    Introdução: O tiro é uma modalidade esportiva milenar que requer requires aptidões mentais, emocionais e cognitivas de seu praticante. Objetivo: Nesta revisão sistemática abrangente procuramos examinar a hipótese de eficiência neural em esportes de tiro (rifle, pistola e tiro com arco) relacionados ao desempenho. Métodos: Realizamos a busca nas bases de dados PubMed e Google Scholar utilizando os termos “brain and shooting”. Após aplicados os critérios do estudo, 28 artigos participaram desta revisão. Resultados e Discussão: Existem diferenças consistentes entre atiradores experientes e iniciantes na atividade cortical relacionada ao desempenho do tiro, o que implica que a experiência do tiro leva a ajustes cerebrais para energia segura durante a tarefa e se correlaciona com o desempenho. A lateralidade hemisférica implica que os experts apresentam alto grau de foco atencional. Conclusão: A literatura mostra que existem diferenças específicas no mapeamento cerebral de atiradores experientes e novatos durante tarefas de tiro. Além disso, o aumento da frequência Alpha no período de mira e o momento de disparo em T3, juntamente com a estabilidade nos locais T4, relacionam-se ao desempenho. Outros achados foram discutidos

    The SARS-CoV-2 Nsp3 macrodomain reverses PARP9/DTX3L-dependent ADP-ribosylation induced by interferon signaling

    Get PDF
    SARS-CoV-2 nonstructural protein 3 (Nsp3) contains a macrodomain that is essential for coronavirus pathogenesis and is thus an attractive target for drug development. This macrodomain is thought to counteract the host interferon (IFN) response, an important antiviral signalling cascade, via the reversal of protein ADP-ribosylation, a posttranslational modification catalyzed by host poly(ADP-ribose) polymerases (PARPs). However, the main cellular targets of the coronavirus macrodomain that mediate this effect are currently unknown. Here, we use a robust immunofluorescence-based assay to show that activation of the IFN response induces ADP-ribosylation of host proteins and that ectopic expression of the SARSCoV- 2 Nsp3 macrodomain reverses this modification in human cells. We further demonstrate that this assay can be used to screen for on-target and cell-active macrodomain inhibitors. This IFN-induced ADP-ribosylation is dependent on PARP9 and its binding partner DTX3L, but surprisingly the expression of the Nsp3 macrodomain or the deletion of either PARP9 or DTX3L does not impair IFN signaling or the induction of IFNresponsive genes. Our results suggest that PARP9/DTX3Ldependent ADP-ribosylation is a downstream effector of the host IFN response and that the cellular function of the SARSCoV- 2 Nsp3 macrodomain is to hydrolyze this end product of IFN signaling, rather than to suppress the IFN response itself

    Inhibition of thimet oligopeptidase by siRNA alters specific intracellular peptides and potentiates isoproterenol signal transduction

    No full text
    Mammalian cells have a large number of intracellular peptides that are generated by extralysosomal proteases. In this study, the enzymatic activity of thimet oligopeptidase (EP24.15) was inhibited in human embryonic kidney (HEK) 293 cells using a specific siRNA sequence. The semi‐quantitative intracellular peptidome analyses of siRNA‐transfected HEK293 cells shows that the levels of specific intracellular peptides are either increased or decreased upon EP24.15 inhibition. Decreased expression of EP24.15 was sufficient to potentiate luciferase gene reporter activation by isoproterenol (1–10 μM). The protein kinase A inhibitor KT5720 (1 μM) reduced the positive effect of the EP24.15 siRNA on isoproterenol signaling. Thus, EP24.15 inhibition by siRNA modulates the levels of specific intracellular peptides and isoproterenol signal transduction5861932873292CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP559698/2009-7Sem informaçã

    Natural intracellular peptides can modulate the interactions of mouse brain proteins and thimet oligopeptidase with 14‐3‐3ε and calmodulin

    No full text
    Protein interactions are crucial for most cellular process. Thus, rationally designed peptides that act as competitive assembly inhibitors of protein interactions by mimicking specific, determined structural elements have been extensively used in clinical and basic research. Recently, mammalian cells have been shown to contain a large number of intracellular peptides of unknown function. Here, we investigate the role of several of these natural intracellular peptides as putative modulators of protein interactions that are related to Ca2+‐calmodulin (CaM) and 14‐3‐3ε, which are proteins that are related to the spatial organization of signal transduction within cells. At concentrations of 1–50 μM, most of the peptides that are investigated in this study modulate the interactions of CaM and 14‐3‐3ε with proteins from the mouse brain cytoplasm or recombinant thimet oligopeptidase (EP24.15) in vitro, as measured by surface plasmon resonance. One of these peptides (VFDVELL; VFD‐7) increases the cytosolic Ca2+ concentration in a dose‐dependent manner but only if introduced into HEK293 cells, which suggests a wide biological function of this peptide. Therefore, it is exciting to suggest that natural intracellular peptides are novel modulators of protein interactions and have biological functions within cells121726412655CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP559698/2009-7Sem informaçã

    Inhibition of thimet oligopeptidase by siRNA alters specific intracellular peptides and potentiates isoproterenol signal transduction

    No full text
    Mammalian cells have a large number of intracellular peptides that are generated by extralysosomal proteases. In this study, the enzymatic activity of thimet oligopeptidase (EP24.15) was inhibited in human embryonic kidney (HEK) 293 cells using a specific siRNA sequence. The semi-quantitative intracellular peptidome analyses of siRNA-transfected HEK293 cells shows that the levels of specific intracellular peptides are either increased or decreased upon EP24.15 inhibition. Decreased expression of EP24.15 was sufficient to potentiate luciferase gene reporter activation by isoproterenol (1-10 mu M). The protein kinase A inhibitor KT5720 (1 mu M) reduced the positive effect of the EP24.15 siRNA on isoproterenol signaling. Thus, EP24.15 inhibition by siRNA modulates the levels of specific intracellular peptides and isoproterenol signal transduction. (C) 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.Brazilian National Research Council (CNPq) [559698/2009-7]Brazilian National Research Council (CNPq)University of Sao PauloUniversity of Sao Paulo [2011.1.9333.1.3, NAPNA]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP

    Natural intracellular peptides can modulate the interactions of mouse brain proteins and thimet oligopeptidase with 14-3-3e and calmodulin

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Protein interactions are crucial for most cellular process. Thus, rationally designed peptides that act as competitive assembly inhibitors of protein interactions by mimicking specific, determined structural elements have been extensively used in clinical and basic research. Recently, mammalian cells have been shown to contain a large number of intracellular peptides of unknown function. Here, we investigate the role of several of these natural intracellular peptides as putative modulators of protein interactions that are related to Ca2+-calmodulin (CaM) and 14-3-3 epsilon, which are proteins that are related to the spatial organization of signal transduction within cells. At concentrations of 1-50 mu M, most of the peptides that are investigated in this study modulate the interactions of CaM and 14-3-3 epsilon with proteins from the mouse brain cytoplasm or recombinant thimet oligopeptidase (EP24.15) in vitro, as measured by surface plasmon resonance. One of these peptides (VFDVELL; VFD-7) increases the cytosolic Ca2+ concentration in a dose-dependent manner but only if introduced into HEK293 cells, which suggests a wide biological function of this peptide. Therefore, it is exciting to suggest that natural intracellular peptides are novel modulators of protein interactions and have biological functions within cells.121726412655Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade de São Paulo (USP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Identification of intracellular peptides in rat adipose tissue: Insights into insulin resistance

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Intracellular peptides generated by the proteasome and oligopeptidases have been suggested to function in signal transduction and to improve insulin resistance in mice fed a high-caloric diet. The aim of this study was to identify specific intracellular peptides in the adipose tissue of Wistar rats that could be associated with the physiological and therapeutic control of glucose uptake. Using semiquantitative mass spectrometry and LC/MS/MS analyses, we identified ten peptides in the epididymal adipose tissue of the Wistar rats; three of these peptides were present at increased levels in rats that were fed a high-caloric Western diet (WD) compared with rats fed a control diet (CD). The results of affinity chromatography suggested that in the cytoplasm of epididymal adipose tissue from either WD or CD rats, distinctive proteins bind to these peptides. However, despite the observed increase in the WD animals, the evaluated peptides increased insulin-stimulated glucose uptake in 3T3-L1 adipocytes treated with palmitate. Thus, intracellular peptides from the adipose tissue of Wistar rats can bind to specific proteins and facilitate insulin-induced glucose uptake in 3T3-L1 adipocytes.121726682681Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade de São Paulo (USP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Identification of intracellular peptides in rat adipose tissue: insights into insulin resistance

    No full text
    Intracellular peptides generated by the proteasome and oligopeptidases have been suggested to function in signal transduction and to improve insulin resistance in mice fed a high‐caloric diet. The aim of this study was to identify specific intracellular peptides in the adipose tissue of Wistar rats that could be associated with the physiological and therapeutic control of glucose uptake. Using semiquantitative mass spectrometry and LC/MS/MS analyses, we identified ten peptides in the epididymal adipose tissue of the Wistar rats; three of these peptides were present at increased levels in rats that were fed a high‐caloric Western diet (WD) compared with rats fed a control diet (CD). The results of affinity chromatography suggested that in the cytoplasm of epididymal adipose tissue from either WD or CD rats, distinctive proteins bind to these peptides. However, despite the observed increase in the WD animals, the evaluated peptides increased insulin‐stimulated glucose uptake in 3T3‐L1 adipocytes treated with palmitate. Thus, intracellular peptides from the adipose tissue of Wistar rats can bind to specific proteins and facilitate insulin‐induced glucose uptake in 3T3‐L1 adipocytes121726682681CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP559698/2009–7Sem informaçã

    Natural intracellular peptides can modulate the interactions of mouse brain proteins and thimet oligopeptidase with 14-3-3e and calmodulin

    No full text
    Protein interactions are crucial for most cellular process. Thus, rationally designed peptides that act as competitive assembly inhibitors of protein interactions by mimicking specific, determined structural elements have been extensively used in clinical and basic research. Recently, mammalian cells have been shown to contain a large number of intracellular peptides of unknown function. Here, we investigate the role of several of these natural intracellular peptides as putative modulators of protein interactions that are related to Ca2+-calmodulin (CaM) and 14-3-3 epsilon, which are proteins that are related to the spatial organization of signal transduction within cells. At concentrations of 1-50 mu M, most of the peptides that are investigated in this study modulate the interactions of CaM and 14-3-3 epsilon with proteins from the mouse brain cytoplasm or recombinant thimet oligopeptidase (EP24.15) in vitro, as measured by surface plasmon resonance. One of these peptides (VFDVELL; VFD-7) increases the cytosolic Ca2+ concentration in a dose-dependent manner but only if introduced into HEK293 cells, which suggests a wide biological function of this peptide. Therefore, it is exciting to suggest that natural intracellular peptides are novel modulators of protein interactions and have biological functions within cells.Brazilian National Research Council (CNPq) [559698/2009-7]Brazilian National Research Council (CNPq)University of Sao PauloUniversity of Sao Paulo [2011.1.9333.1.3, NAPNA]CNPqCNPqFundacao de Amparo a Pesquisa do Estado de Sao PauloFundacao de Amparo a Pesquisa do Estado de Sao Paul
    corecore