750 research outputs found

    The mixed problem in L^p for some two-dimensional Lipschitz domains

    Get PDF
    We consider the mixed problem for the Laplace operator in a class of Lipschitz graph domains in two dimensions with Lipschitz constant at most 1. The boundary of the domain is decomposed into two disjoint sets D and N. We suppose the Dirichlet data, f_D has one derivative in L^p(D) of the boundary and the Neumann data is in L^p(N). We find conditions on the domain and the sets D and N so that there is a p_0>1 so that for p in the interval (1,p_0), we may find a unique solution to the mixed problem and the gradient of the solution lies in L^p

    The balance of power: accretion and feedback in stellar mass black holes

    Full text link
    In this review we discuss the population of stellar-mass black holes in our galaxy and beyond, which are the extreme endpoints of massive star evolution. In particular we focus on how we can attempt to balance the available accretion energy with feedback to the environment via radiation, jets and winds, considering also possible contributions to the energy balance from black hole spin and advection. We review quantitatively the methods which are used to estimate these quantities, regardless of the details of the astrophysics close to the black hole. Once these methods have been outlined, we work through an outburst of a black hole X-ray binary system, estimating the flow of mass and energy through the different accretion rates and states. While we focus on feedback from stellar mass black holes in X-ray binary systems, we also consider the applicability of what we have learned to supermassive black holes in active galactic nuclei. As an important control sample we also review the coupling between accretion and feedback in neutron stars, and show that it is very similar to that observed in black holes, which strongly constrains how much of the astrophysics of feedback can be unique to black holes.Comment: To be published in Haardt et al. Astrophysical Black Holes. Lecture Notes in Physics. Springer 201

    Abundances of the elements in the solar system

    Full text link
    A review of the abundances and condensation temperatures of the elements and their nuclides in the solar nebula and in chondritic meteorites. Abundances of the elements in some neighboring stars are also discussed.Comment: 42 pages, 11 tables, 8 figures, chapter, In Landolt- B\"ornstein, New Series, Vol. VI/4B, Chap. 4.4, J.E. Tr\"umper (ed.), Berlin, Heidelberg, New York: Springer-Verlag, p. 560-63

    Extreme Ultra-Violet Spectroscopy of the Lower Solar Atmosphere During Solar Flares

    Full text link
    The extreme ultraviolet portion of the solar spectrum contains a wealth of diagnostic tools for probing the lower solar atmosphere in response to an injection of energy, particularly during the impulsive phase of solar flares. These include temperature and density sensitive line ratios, Doppler shifted emission lines and nonthermal broadening, abundance measurements, differential emission measure profiles, and continuum temperatures and energetics, among others. In this paper I shall review some of the advances made in recent years using these techniques, focusing primarily on studies that have utilized data from Hinode/EIS and SDO/EVE, while also providing some historical background and a summary of future spectroscopic instrumentation.Comment: 34 pages, 8 figures. Submitted to Solar Physics as part of the Topical Issue on Solar and Stellar Flare

    The importance of long‐term experiments in agriculture: their management to ensure continued crop production and soil fertility; the Rothamsted experience

    Get PDF
    Summary Long‐term field experiments that test a range of treatments and are intended to assess the sustainability of crop production, and thus food security, must be managed actively to identify any treatment that is failing to maintain or increase yields. Once identified, carefully considered changes can be made to the treatment or management, and if they are successful yields will change. If suitable changes cannot be made to an experiment to ensure its continued relevance to sustainable crop production, then it should be stopped. Long‐term experiments have many other uses. They provide a field resource and samples for research on plant and soil processes and properties, especially those properties where change occurs slowly and affects soil fertility. Archived samples of all inputs and outputs are an invaluable source of material for future research, and data from current and archived samples can be used to develop models to describe soil and plant processes. Such changes and uses in the Rothamsted experiments are described, and demonstrate that with the appropriate crop, soil and management, acceptable yields can be maintained for many years, with either organic manure or inorganic fertilizers. Highlights Long‐term experiments demonstrate sustainability and increases in crop yield when managed to optimize soil fertility. Shifting individual response curves into coincidence increases understanding of the factors involved. Changes in inorganic and organic pollutants in archived crop and soil samples are related to inputs over time. Models describing soil processes are developed from current and archived soil data
    corecore