42 research outputs found

    Big Domains Are Novel Ca2+-Binding Modules: Evidences from Big Domains of Leptospira Immunoglobulin-Like (Lig) Proteins

    Get PDF
    binds to a Big domains, which would provide a novel functional role of the proteins containing Big fold. with dissociation constants of 2–4 µM. Lig A9 and Lig A10 domains fold well with moderate thermal stability, have β-sheet conformation and form homodimers. Fluorescence spectra of Big domains show a specific doublet (at 317 and 330 nm), probably due to Trp interaction with a Phe residue. Equilibrium unfolding of selected Big domains is similar and follows a two-state model, suggesting the similarity in their fold. binding

    The Terminal Immunoglobulin-Like Repeats of LigA and LigB of Leptospira Enhance Their Binding to Gelatin Binding Domain of Fibronectin and Host Cells

    Get PDF
    Leptospira spp. are pathogenic spirochetes that cause the zoonotic disease leptospirosis. Leptospiral immunoglobulin (Ig)-like protein B (LigB) contributes to the binding of Leptospira to extracellular matrix proteins such as fibronectin, fibrinogen, laminin, elastin, tropoelastin and collagen. A high-affinity Fn-binding region of LigB has been localized to LigBCen2, which contains the partial 11th and full 12th Ig-like repeats (LigBCen2R) and 47 amino acids of the non-repeat region (LigBCen2NR) of LigB. In this study, the gelatin binding domain of fibronectin was shown to interact with LigBCen2R (KD = 1.91±0.40 µM). Not only LigBCen2R but also other Ig-like domains of Lig proteins including LigAVar7'-8, LigAVar10, LigAVar11, LigAVar12, LigAVar13, LigBCen7'-8, and LigBCen9 bind to GBD. Interestingly, a large gain in affinity was achieved through an avidity effect, with the terminal domains, 13th (LigA) or 12th (LigB) Ig-like repeat of Lig protein (LigAVar7'-13 and LigBCen7'-12) enhancing binding affinity approximately 51 and 28 fold, respectively, compared to recombinant proteins without this terminal repeat. In addition, the inhibited effect on MDCKs cells can also be promoted by Lig proteins with terminal domains, but these two domains are not required for gelatin binding domain binding and cell adhesion. Interestingly, Lig proteins with the terminal domains could form compact structures with a round shape mediated by multidomain interaction. This is the first report about the interaction of gelatin binding domain of Fn and Lig proteins and provides an example of Lig-gelatin binding domain binding mediating bacterial-host interaction

    Detection and Quantification of Leptospira interrogans in Hamster and Rat Kidney Samples: Immunofluorescent Imprints versus Real-time PCR

    Get PDF
    A major limitation in the clinical management and experimental research of leptospirosis is the poor performance of the available methods for the direct detection of leptospires. In this study, we compared real-time PCR (qPCR), targeting the lipL32 gene, with the immunofluorescent imprint method (IM) for the detection and quantification of leptospires in kidney samples from the rat and hamster experimental models of leptospirosis. Using a virulent strain of Leptospira interrogans serovar Copenhageni, a chronic infection was established in the rat model, which were euthanized 28 days post-infection, while the hamster model simulated an acute infection and the hamsters were euthanized eight days after inoculation. Leptospires in the kidney samples were detected using culture isolation, qPCR and the IM, and quantified using qPCR and the IM. In both the acute and chronic infection models, the correlation between quantification by qPCR and the IM was found to be positive and statistically significant (P<0.05). Therefore, this study demonstrates that the IM is a viable alternative for not only the detection but also the quantification of leptospires, particularly when the use of qPCR is not feasible

    Development and Validation of a Real-Time PCR for Detection of Pathogenic Leptospira Species in Clinical Materials

    Get PDF
    Available serological diagnostics do not allow the confirmation of clinically suspected leptospirosis at the early acute phase of illness. Several conventional and real-time PCRs for the early diagnosis of leptospirosis have been described but these have been incompletely evaluated. We developed a SYBR Green-based real-time PCR targeting secY and validated it according to international guidelines. To determine the analytical specificity, DNA from 56 Leptospira strains belonging to pathogenic, non-pathogenic and intermediate Leptospira spp. as well as 46 other micro-organisms was included in this study. All the pathogenic Leptospira gave a positive reaction. We found no cross-reaction with saprophytic Leptospira and other micro-organisms, implying a high analytical specificity. The analytical sensitivity of the PCR was one copy per reaction from cultured homologous strain M 20 and 1.2 and 1.5 copy for heterologous strains 1342 K and Sarmin, respectively. In spiked serum & blood and kidney tissue the sensitivity was 10 and 20 copies for M 20, 15 and 30 copies for 1342 K and 30 and 50 copies for Sarmin. To determine the diagnostic sensitivity (DSe) and specificity (DSp), clinical blood samples from 26 laboratory-confirmed and 107 negative patients suspected of leptospirosis were enrolled as a prospective consecutive cohort. Based on culture as the gold standard, we found a DSe and DSp of 100% and 93%, respectively. All eight PCR positive samples that had a negative culture seroconverted later on, implying a higher actual DSp. When using culture and serology as the gold standard, the DSe was lower (89%) while the DSp was higher (100%). DSe was 100% in samples collected within the first – for treatment important - 4 days after onset of the illness. Reproducibility and repeatability of the assay, determined by blind testing kidney samples from 20 confirmed positive and 20 negative rodents both appeared 100%. In conclusion we have described for the first time the development of a robust SYBR Green real-time PCR for the detection of pathogenic Leptospira combined with a detailed assessment of its clinical accuracy, thus providing a method for the early diagnosis of leptospirosis with a well-defined satisfactory performance

    Serum Activity of Platelet-Activating Factor Acetylhydrolase Is a Potential Clinical Marker for Leptospirosis Pulmonary Hemorrhage

    Get PDF
    Pulmonary hemorrhage has been recognized as a major, often lethal, manifestation of severe leptospirosis albeit the pathogenesis remains unclear. The Leptospira interrogans virulent serogroup Icterohaemorrhagiae serovar Lai encodes a protein (LA2144), which exhibited the platelet-activating factor acetylhydrolase (PAF-AH) activity in vitro similar to that of human serum with respect to its substrate affinity and specificity and thus designated L-PAF-AH. On the other hand, the primary amino acid sequence of L-PAF-AH is homologous to the α1-subunit of the bovine brain PAF-AH isoform I. The L-PAF-AH was proven to be an intracellular protein, which was encoded unanimously and expressed similarly in either pathogenic or saprophytic leptospires. Mongolian gerbil is an appropriate experimental model to study the PAF-AH level in serum with its basal activity level comparable to that of human while elevated directly associated with the course of pulmonary hemorrhage during severe leptospirosis. Mortality occurred around the peak of pulmonary hemorrhage, along with the transition of the PAF-AH activity level in serum, from the increasing phase to the final decreasing phase. Limited clinical data indicated that the serum activity of PAF-AH was likely to be elevated in the patients infected by L. interrogans serogroup Icterohaemorrhagiae, but not in those infected by other less severe serogroups. Although L-PAF-AH might be released into the micro-environment via cell lysis, its PAF-AH activity apparently contributed little to this elevation. Therefore, the change of PAF-AH in serum not only may be influential for pulmonary hemorrhage, but also seems suitable for disease monitoring to ensure prompt clinical treatment, which is critical for reducing the mortality of severe leptospirosis

    Transcriptional Responses of Leptospira interrogans to Host Innate Immunity: Significant Changes in Metabolism, Oxygen Tolerance, and Outer Membrane

    Get PDF
    Leptospirosis is an important tropical disease around the world, particularly in humid tropical and subtropical countries. As a major pathogen of this disease, Leptospira interrogans can be shed from the urine of reservoir hosts, survive in soil and water, and infect humans through broken skin or mucous membranes. Recently, host adaptability and immune evasion of L. interrogans to host innate immunity was partially elucidated in infection or animal models. A better understanding of the molecular mechanisms of L. interrogans in response to host innate immunity is required to learn the nature of early leptospirosis. This study focused on the transcriptome of L. interrogans during host immune cells interaction. Significant changes in energy metabolism, oxygen tolerance and outer membrane protein profile were identified as potential immune evasion strategies by pathogenic Leptospira during the early stage of infection. The major outer membrane proteins (OMPs) of L. interrogans may be regulated by the major OmpR specific transcription factor (LB333). These results provide a foundation for further studying the pathogenesis of leptospirosis, as well as identifying gene regulatory networks in Leptospira spp
    corecore