7,646 research outputs found

    Solving monotone stochastic variational inequalities and complementarity problems by progressive hedging

    Get PDF
    The concept of a stochastic variational inequality has recently been articulated in a new way that is able to cover, in particular, the optimality conditions for a multistage stochastic programming problem. One of the long-standing methods for solving such an optimization problem under convexity is the progressive hedging algorithm. That approach is demonstrated here to be applicable also to solving multistage stochastic variational inequality problems under monotonicity, thus increasing the range of applications for progressive hedging. Stochastic complementarity problems as a special case are explored numerically in a linear two-stage formulation

    Mouse models of diabetes, obesity and related kidney disease

    Full text link
    © 2016 Glastras et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Multiple rodent models have been used to study diabetic kidney disease (DKD). The purpose of the present study was to compare models of diabetes and obesity-induced metabolic syndrome and determine differences in renal outcomes. C57BL/6 male mice were fed either normal chow or high fat diet (HFD). At postnatal week 8, chow-fed mice were randomly assigned to low-dose streptozotocin (STZ, 55 mg/kg/day, five consecutive days) or vehicle control, whereas HFD-fed mice were given either one high-dose of STZ (100 mg/kg) or vehicle control. Intraperitoneal glucose tolerance tests were performed at Week 14, 20 and 30. Urinary albumin to creatinine ratio (ACR) and serum creatinine were measured, and renal structure was assessed using Periodic Acid Schiff (PAS) staining at Week 32. Results showed that chow-fed mice exposed to five doses of STZ resembled type 1 diabetes mellitus with a lean phenotype, hyperglycaemia, microalbuminuria and increased serum creatinine levels. Their kidneys demonstrated moderate tubular injury with evidence of tubular dilatation and glycogenated nuclear inclusion bodies. HFD-fed mice resembled metabolic syndrome as they were obese with dyslipidaemia, insulin resistance, and significantly impaired glucose tolerance. One dose STZ, in addition to HFD, did not worsen metabolic features (including fasting glucose, non esterified fatty acid, and triglyceride levels). There were significant increases in urinary ACR and serum creatinine levels, and renal structural changes were predominantly related to interstitial vacuolation and tubular dilatation in HFD-fed mice

    On the dual representation of coherent risk measures

    Get PDF
    A classical result in risk measure theory states that every coherent risk measure has a dual representation as the supremum of certain expected value over a risk envelope. We study this topic in more detail. The related issues include: (1) Set operations of risk envelopes and how they change the risk measures, (2) The structure of risk envelopes of popular risk measures, (3) Aversity of risk measures and its impact to risk envelopes, and (4) A connection between risk measures in stochastic optimization and uncertainty sets in robust optimization

    Maternal Obesity Promotes Diabetic Nephropathy in Rodent Offspring

    Full text link
    Maternal obesity is known to increase the risk of obesity and diabetes in offspring. Though diabetes is a key risk factor for the development of chronic kidney disease (CKD), the relationship between maternal obesity and CKD has not been clearly defined. In this study, a mouse model of maternal obesity was employed to determine the impact of maternal obesity on development of diabetic nephropathy in offspring. Female C57BL/6 mice were fed high-fat diet (HFD) for six weeks prior to mating, during gestation and lactation. Male offspring were weaned to normal chow diet. At postnatal Week 8, offspring were randomly administered low dose streptozotocin (STZ, 55 mg/kg/day for five days) to induce diabetes. Assessment of renal damage took place at postnatal Week 32. We found that offspring of obese mothers had increased renal fibrosis, inflammation and oxidative stress. Importantly, offspring exposed to maternal obesity had increased susceptibility to renal damage when an additional insult, such as STZ-induced diabetes, was imposed. Specifically, renal inflammation and oxidative stress induced by diabetes was augmented by maternal obesity. Our findings suggest that developmental programming induced by maternal obesity has implications for renal health in offspring. Maternal obesity should be considered a risk factor for CKD

    Hydrogen is neuroprotective against surgically induced brain injury

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurosurgical operations cause unavoidable damage to healthy brain tissues. Direct surgical injury as well as surgically induced oxidative stress contributes to the subsequent formation of brain edema. Therefore, we tested the neuroprotective effects of hydrogen (H<sub>2</sub>) in an established surgical brain injury (SBI) model in rats.</p> <p>Materials and methods</p> <p>Adult male Sprague - Dawley rats (weight 300-350g) were divided into three groups to serve as sham operated, SBI without treatment, and SBI treated with H<sub>2 </sub>(2.9%). Brain water content, myeloperoxidase (MPO) assay, lipid peroxidation (LPO), and neurological function were measured at 24 hrs after SBI.</p> <p>Results</p> <p>SBI resulted in localized brain edema (p = < 0.001). Hydrogen (2.9%) administered concurrently with surgery significantly decreased the formation of cerebral edema (p = 0.028) and improved neurobehavioral score (p = 0.022). However, hydrogen treatment failed to reduce oxidative stress (LPO assay) or inflammation (MPO assay) in brain tissues.</p> <p>Conclusions</p> <p>Hydrogen appears to be promising as an effective, yet inexpensive way to reduce cerebral edema caused by surgical procedures. Hydrogen has the potential to improve clinical outcome, decrease hospital stay, and reduce overall cost to patients and the health care system.</p

    Effect of water vapor on the spallation of thermal barrier coating systems during laboratory cyclic oxidation testing.

    Get PDF
    The effect of water and water vapor on the lifetime of Ni-based superalloy samples coated with a typical thermal barrier coating system—b-(Ni,Pt)Al bond coat and yttria stabilized zirconia (YSZ) top coat deposited by electron beam physical vapor deposition (EB-PVD) was studied. Samples were thermally cycled to 1,150 C and subjected to a water-drop test in order to elucidate the effect of water vapor on thermal barrier coating (TBC) spallation. It was shown that the addition of water promotes spallation of TBC samples after a given number of cycles at 1,150 C. This threshold was found to be equal to 170 cycles for the present system. Systems based on b-NiAl bond coat or on Pt-rich c/c0 bond coat were also sensitive to the water-drop test. Moreover, it was shown that water vapor in ambient air after minutes or hours at room temperature, promotes also TBC spallation once the critical number of cycles has been reached. This desktop spalling (DTS) can be prevented by locking up the cycled samples in a dry atmosphere box. These results for TBC systems confirm and document Smialek’s theory about DTS and moisture induced delayed spalling (MIDS) being the same phenomenon. Finally, the mechanisms implying hydrogen embrittlement or surface tension modifications are discussed

    Dual-gated bilayer graphene hot electron bolometer

    Full text link
    Detection of infrared light is central to diverse applications in security, medicine, astronomy, materials science, and biology. Often different materials and detection mechanisms are employed to optimize performance in different spectral ranges. Graphene is a unique material with strong, nearly frequency-independent light-matter interaction from far infrared to ultraviolet, with potential for broadband photonics applications. Moreover, graphene's small electron-phonon coupling suggests that hot-electron effects may be exploited at relatively high temperatures for fast and highly sensitive detectors in which light energy heats only the small-specific-heat electronic system. Here we demonstrate such a hot-electron bolometer using bilayer graphene that is dual-gated to create a tunable bandgap and electron-temperature-dependent conductivity. The measured large electron-phonon heat resistance is in good agreement with theoretical estimates in magnitude and temperature dependence, and enables our graphene bolometer operating at a temperature of 5 K to have a low noise equivalent power (33 fW/Hz1/2). We employ a pump-probe technique to directly measure the intrinsic speed of our device, >1 GHz at 10 K.Comment: 5 figure

    Interactions between downslope flows and a developing cold-air pool

    Get PDF
    A numerical model has been used to characterize the development of a region of enhanced cooling in an alpine valley with a width of order (Formula presented.) km, under decoupled stable conditions. The region of enhanced cooling develops largely as a region of relatively dry air which partitions the valley atmosphere dynamics into two volumes, with airflow partially trapped within the valley by a developing elevated inversion. Complex interactions between the region of enhanced cooling and the downslope flows are quantified. The cooling within the region of enhanced cooling and the elevated inversion is almost equally partitioned between radiative and dynamic effects. By the end of the simulation, the different valley atmospheric regions approach a state of thermal equilibrium with one another, though this cannot be said of the valley atmosphere and its external environment.Peer reviewe

    Synthesis and Enhanced Field-Emission of Thin-Walled, Open-Ended, and Well-Aligned N-Doped Carbon Nanotubes

    Get PDF
    Thin-walled, open-ended, and well-aligned N-doped carbon nanotubes (CNTs) on the quartz slides were synthesized by using acetonitrile as carbon sources. As-obtained products possess large thin-walled index (TWI, defined as the ratio of inner diameter and wall thickness of a CNT). The effect of temperature on the growth of CNTs using acetonitrile as the carbon source was also investigated. It is found that the diameter, the TWI of CNTs increase and the Fe encapsulation in CNTs decreases as the growth temperature rises in the range of 780–860°C. When the growth temperature is kept at 860°C, CNTs with TWI = 6.2 can be obtained. It was found that the filed-emission properties became better as CNT growth temperatures increased from 780 to 860°C. The lowest turn-on and threshold field was 0.27 and 0.49 V/μm, respectively. And the best field-enhancement factors reached 1.09 × 105, which is significantly improved about an order of magnitude compared with previous reports. In this study, about 30 × 50 mm2 free-standing film of thin-walled open-ended well-aligned N-doped carbon nanotubes was also prepared. The free-standing film can be transferred easily to other substrates, which would promote their applications in different fields

    Giant Anharmonic Phonon Scattering in PbTe

    Full text link
    Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivity. However, the origin of this low thermal conductivity in a simple rocksalt structure has so far been elusive. Using a combination of inelastic neutron scattering measurements and first-principles computations of the phonons, we identify a strong anharmonic coupling between the ferroelectric transverse optic (TO) mode and the longitudinal acoustic (LA) modes in PbTe. This interaction extends over a large portion of reciprocal space, and directly affects the heat-carrying LA phonons. The LA-TO anharmonic coupling is likely to play a central role in explaining the low thermal conductivity of PbTe. The present results provide a microscopic picture of why many good thermoelectric materials are found near a lattice instability of the ferroelectric type
    • …
    corecore