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Abstract

The concept of a stochastic variational inequality has recently been articulated in a new way
that is able to cover, in particular, the optimality conditions for a multistage stochastic program-
ming problem. One of the long-standing methods for solving such an optimization problem under
convexity is the progressive hedging algorithm. That approach is demonstrated here to be applica-
ble also to solving multistage stochastic variational inequality problems under monotonicity, thus
increasing the range of applications for progressive hedging. Stochastic complementarity problems
as a special case are explored numerically in a linear two-stage formulation.
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1 Introduction

Stochastic programming problems aim at determining optimal responses to information as it becomes
available. In a multistage formulation with convexity, the optimality conditions in such a problem take
the form of a monotone variational inequality with stochastic structure. Interactions with statistics
are rich and extensive, but also challenging in how properly to deal with emerging information and
generate effective surrogates for conditional expectations and other data features important to making
decisions. Problems of approximation in statistics offer, in turn, wide territory for applying techniques
of stochastic optimization.

Variational inequality problems, with complementary problems as a special case, have been widely
recognized as useful not only in capturing optimality conditions but also in characterizing equilibrium
in game-type models of interaction, cf. [6]. When the underlying applications involve uncertainty, it is
natural to think of the conditions as leading to a “stochastic” variational inequality. But the formula-
tion of what problem is to be solved under that heading has gone off in completely different directions.
One line of thought, the ERM approach occupying much of the literature up to now, considers not a
single variational inequality but a probablistic collection of separate variational inequalities and views
the associated problem as that of an element that “comes closest” to solving all of them simulta-
neously.3 Contributions in that direction are seen for instance in [1, 2, 3, 7, 16, 17, 25]. The ET
approach, in contrast, takes stochastic variational inequality problems to be just like deterministic
variational inequality problems but with the mapping in question expressed by an expectation for-
mula. This direction is followed for instance in [12, 13, 14, 15]. The ERM and ET developments have
mostly concentrated on single-stage models, not involving anything like a recourse decision. On the
other hand, there has been work on serious applications to power systems, for example in [10, 11, 18],
where multistage game-like models with stochastic features are set up as giant variational inequality
problems — without attention to what, in general, might deserve to be called a “stochastic variational
inequality problem.”

In [23], in an effort to lay a foundation for a broader theory in the subject, Rockafellar and Wets
extended the EV approach from single stage to multistage modeling in a manner capable of covering
the optimality conditions in multistage stochastic programming that involve prices for information.
Such conditions support stochastic decomposition, which might be valuable in particular in game-like
applications such as to energy systems, although information prices have not yet been exploited in
that context.

Here we take the extension in [23] as our platform and focus on how solutions to monotone stochas-
tic variational inequalities of multistage type may be computed. We show that the progressive hedg-
ing algorithm in convex stochastic programming [21] carries over to this larger topic with hardly any
changes except for its mode of articulation. Although we don’t get into statistical issues as such, they
are present for instance in the eventual need to understand how the solutions we obtain depend on
how the probability space is set up — a topic for investigation elsewhere.4

A review of the variational inequalities we wish to solve and their counterparts in stochastic
programming will furnish a starting point. To avoid distractions of infinite dimensionality and to
mesh with [23], where more details can be found along with references to the history and literature
of the subject, we consider here a finite set Ξ of scenarios ξ = (ξ1, . . . , ξN ) composed of elements ξk
in sets Ξk that are regarded as being revealed sequentially in N stages. Each scenario ξ has a known

3The analog in numerical analysis lies in the theory of overdetermined systems of equations generated by noise in
measurements of parameters.

4In part, this has recently been taken up by Chen et al. in [4] in terms of discrete approximations to two-stage
stochastic variational inequality problems based on “continuous” probability instead of “discrete” probability, as here.
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probability p(ξ) > 0, and these probabilities add to 1. In this way Ξ is a probability space. Our
attention is directed to mappings that designate responses to the scenarios in Ξ in the notation

x(·) : ξ 7→ x(ξ) = (x1(ξ), . . . , xN (ξ)) ∈ IRn1 × · · · × IRnN = IRn. (1.1)

The linear space L consisting of all such mappings x(·) from Ξ to IRn is given the expectational inner
product

〈x(·), w(·)〉 = Eξ[x(ξ)·w(ξ)] =
∑

ξ∈Ξ
p(ξ)

∑N

k=1
xk(ξ)·wk(ξ), (1.2)

which makes it into a finite-dimensional Hilbert space. Our real interest centers though on mappings
x(·) that are nonanticipative in the sense that the response xk(ξ) at stage k depends only on the
portion (ξ1, . . . , ξk−1) of the scenario ξ realized in earlier stages:

x(ξ) = (x1, x2(ξ1), x3(ξ1, ξ2), . . . , xN (ξ1, ξ2, . . . , ξN−1)) under nonanticipativity. (1.3)

We capture this condition as a linear constraint by requiring x(·) to belong to the nonanticipativity
subspace N of L,

N = {x(·) ∈ L |xk(ξ1, . . . , ξk−1, ξk, . . . , ξN ) doesn’t depend on ξk, . . . , ξN}. (1.4)

Also important then is the subspace of L that is orthogonally complementary to N with respect to
the inner product (1.2), M = N⊥. It is given by

M = {w(·) ∈ L |Eξ | ξ1,...,ξk−1
wk(ξ) = 0, ∀k}. (1.5)

where the expectation is the conditional expectation over the remaining possibilities for the scenario
ξ given that the portion (ξ1, . . . , ξk−1) is already known.

The complementary subspaces N and M will be central in what follows whether we are dealing
with multistage stochastic programming or stochastic variational inequalities more generally. So too
will be response constraints of the form

x(ξ) ∈ C(ξ) for all ξ ∈ Ξ (1.6)

in which each C(ξ) is assumed to be a nonempty closed convex subset of IRn. The set of all x(·)
satisfying (1.6) forms a nonempty closed convex subset of L which we denote by C.

For the response functions x(·) in C ∩ N (assumed to be nonempty), we consider an optimization
problem in convex stochastic programming and the corresponding variational inequality characteriza-
tion of optimality, and then widen the picture to monotone stochastic variational inequalities more
broadly.

Adhering to a context of differentiability to keep matters simple (although subgradients could be
brought in instead), we consider now for each ξ ∈ Ξ a continuously differentiable convex function
g(·, ξ) : C(ξ)→ IR and get

G : x(·)→ Eξ[g(x(ξ), ξ)] (1.7)

as a continuously differentiable convex function on C with gradient mapping ∇G : C → L, where
∇G(x(·)) is the element of L that assigns to ξ the vector ∇xg(x(ξ), ξ) ∈ IRn. The associated stochastic
programming problem is to

minimize G(x(·)) over all x(·) ∈ C ∩ N . (1.8)
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and the corresponding first-order condition for the optimality of x(·), both necessary and sufficient, is

−∇G(x(·)) ∈ NC∩N (x(·)), (1.9)

where NC∩N (x(·)) is the normal cone to C ∩ N at x(·). This variational inequality in L over the set
C ∩ N is closely related to an alternative condition,

x(·) ∈ N and ∃w(·) ∈M such that −∇G(x(·))− w(·) ∈ NC(x(·)), (1.10)

in which the element w(·) from the complementary spaceM in (1.5) has the role of a Lagrange multi-
plier for the constraint of nonanticipativity. Specifically, as shown in [23], (1.10) is always sufficient for
(1.9) and it is necessary under a constraint qualification on the intersection of C with N . For instance
it holds if there is an element x̂(·) of N such that x̂(ξ) ∈ riC(ξ) for all ξ ∈ Ξ, or on the other hand if
the sets C(ξ) in (1.4) are all polyhedral.

The progressive hedging algorithm [21] for solving (1.9) is based on solving (1.10) and taking
advantage of the fact in (1.10) that

−∇G(x(·))− w(·) ∈ NC(x(·)) ⇐⇒ −∇xg(x(ξ), ξ)− w(ξ) ∈ NC(ξ)(x(ξ)), ∀ξ. (1.11)

This decomposition into a separate “deterministic” problem for each scenario ξ is a powerful feature.
The variational inequality (1.9) is of maximal monotone type because the convexity of G guarantees

the monotonicity of ∇G while the continuity of ∇G on C, and hence on C ∩N , then makes ∇G+NC∩N
be a maximal monotone mapping from L into itself.

Building on this model, the concept of a multistage stochastic variational inequality in “basic
form” was introduced in [23] as referring more generally to

−F(x(·)) ∈ NC∩N (x(·)) (1.12)

in the case of a mapping F : L → L that substitutes for ∇G in (1.9) by replacing the gradients
∇xg(x(ξ), ξ) by expressions F (x(ξ), ξ). In other words, instead of starting with functions g(·, ξ) in the
sets C(ξ) and passing to their gradients, the idea is to start directly with mappings

F (·, ξ) : IRn → IRn for ξ ∈ Ξ (1.13)

and get F : L → L through defining the image F(x(·)) in L of an element x(·) of L under F by

F(x(·)) takes ξ ∈ Ξ to F (x(ξ), ξ) ∈ IRn. (1.14)

It is directly assumed in this, for present purposes, that F (·, ξ) is continuous and monotone on C(ξ),
so that F is continuous and monotone as a mapping from C to L. This ensures that F+NC is maximal
monotone, and the same for F + NC∩N , and it puts the variational inequality (1.12) in the category
we want to focus on.

Just as in the optimization case, there is an alternative condition closely related to (1.12), namely

x(·) ∈ N and ∃w(·) ∈M such that −F(x(·))− w(·) ∈ NC(x(·)). (1.15)

Again, any solution to (1.15) is a solution to (1.12), and the converse holds under either of the
constraint qualifications mentioned earlier. We refer to (1.15) as the stochastic variational inequality
in “extensive form.” Its special virtue is that the w(·)-dependent variational inequality it proposes to
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solve over C instead of the original one over C ∩ N breaks down into a separate variational inequality
for each individual scenario:

−F (x(ξ), ξ)− w(ξ) ∈ NC(ξ)(x(ξ)) for all ξ ∈ Ξ. (1.16)

Our goal is to confirm that this kind of stochastic decomposition, already exploited by the progressive
hedging algorithm in the stochastic programming case, can likewise work for solving the stochastic
variational inequality (1.12) even when it does not stand for the optimality condition (1.9).

Special attention will be paid in this to multistage stochastic complementarity problems, by which
we mean the case of (1.12) and (1.16) when C(ξ) = IRn+ for every ξ, so that

C = {x(·) ∈ L |x(ξ) ≥ 0, ∀ξ},
−v(·) ∈ NC(x(·)) ⇐⇒ 0 ≤ x(ξ) ⊥ v(ξ) ≥ 0, ∀ξ. (1.17)

Such problems have not previously been spotlighted, or for that matter even given a name.

2 Progressive Hedging

We proceed now with describing the progressive hedging algorithm, first in the optimization framework
of stochastic programming, second in the corresponding framework of gradient mappings, and third
in the formulation we are proposing for stochastic variational inequalities in general. Throughout, we
maintain the assumptions in the introduction with their consequences for convexity and monotonicity.

In all situations the projection mappings onto the subspaces N and M of L will serve as a key
ingredient. The projection mapping PN onto N , which assigns to an element x̂(·) of L the nearest
element x(·) of N , is simple to execute as follows:

x(·) = PN (x̂(·)) is obtained by setting xk(ξ) = Eξ | ξ1,...,ξk−1
x̂k(ξ), (2.1)

where the expectation is the conditional expectation already used in connection with the definition of
M in (1.5). The projection mapping PM onto M is equally available then because

PM = I − PN . (2.2)

All versions of the algorithm utilize not only PN and PM but also a parameter r > 0 which can affect
performance if it is too high or too low. The choice of r is an issue that has long been familiar in
stochastic programming and the experience gained there will have to be the guide in handling the new
ranges of applications that we are opening up here.

We use ν = 1, 2, . . . to mark iterations. Iteration ν starts in every case with elements xν(·) ∈ N
and wν(·) ∈ M and produces the elements xν+1(·) ∈ N and wν+1(·) ∈ M that feed into the next
iteration. In our notation we let x(ξ) denote for each ξ ∈ Ξ a variable in IRn; the determination of
the value of that variable for each ξ produces of course a mapping x(·) ∈ L.

Progressive hedging algorithm in stochastic programming: minimization mode. Pass from
having xν ∈ N and wν ∈ M to having xν+1 ∈ N and wν+1 ∈ M as follows in determining x̂ν(·) ∈ L
by solving a separate problem for each scenario ξ to get x̂ν(ξ):

x̂ν(ξ) = argminx(ξ)∈C(ξ)

{
g(x(ξ), ξ) + wν(ξ)·x(ξ) + r

2 ||x(ξ)− xν(ξ)||2
}
,

and then xν+1(·) = PN (x̂ν(·)) and wν+1(·) = wν(·) + rPM(x̂ν(·)).
(2.3)

Note that the vector x(ξ) in (2.3) exists and is uniquely determined, because the proximal term
forces the function being minimized to be strongly convex. This allows us to restate (2.3) in terms of
a gradient condition for optimality instead of minimization and thereby get a form of the procedure
will bridge into a version for variational inequalities more generally.

5



Progressive hedging algorithm in stochastic programming: gradient mode. Pass from hav-
ing xν ∈ N and wν ∈ M to having xν+1 ∈ N and wν+1 ∈ M as follows in determining x̂ν(·) ∈ L by
solving a separate problem for each scenario ξ to get x̂ν(ξ):

x̂ν(ξ) = the unique x(ξ) such that
−∇xg(x(ξ), ξ)− wν(ξ)− r[x(ξ)− xν(ξ)] ∈ NC(ξ)(x(ξ)),

and then xν+1(·) = PN (x̂ν(·)) and wν+1(·) = wν(·) + rPM(x̂ν(·)).
(2.4)

By putting F (x(ξ), ξ) in the place of ∇xg(x(ξ), ξ) we arrive at the proposed extension of the
procedure as a means of solving the variational inequality problem (1.10).

Progressive hedging algorithm for stochastic variational inequalities. Pass from having xν ∈
N and wν ∈ M to having xν+1 ∈ N and wν+1 ∈ M as follows in determining x̂ν(·) ∈ L by solving a
separate problem for each scenario ξ to get x̂ν(ξ):

x̂ν(ξ) = the unique x(ξ) such that
−F (x(ξ), ξ)− wν(ξ)− r[x(ξ)− xν(ξ)] ∈ NC(ξ)(x(ξ)),

and then xν+1(·) = PN (x̂ν(·)) and wν+1(·) = wν(·) + rPM(x̂ν(·)).
(2.5)

In (2.5) the existence and uniqueness of the solution comes from the fact that the r-term makes
the variational inequality be strongly monotone. In the optimization case this corresponds to strong
convexity (with modulus r) of the function being minimized.

The progressive hedging algorithm in stochastic programming corresponds to applying the proximal
point algorithm [20] to a maximal monotone mapping T derived from the gradients and normal cones
in (2.4). Our key observation is that the underpinnings of that application and the convergence results
they support are unaffected when ∇xg(·, ξ) is replaced by F (·, ξ) in our monotonicity setting.

Recall that for a maximal monotone mapping T the iterates of the proximal point algorithm with
parameter r > 0 take the form

xν+1 = (I + r−1T )−1(xν) (2.6)

in exploiting the fact that the “resolvent” mapping (I + r−1T )−1 is single-valued and nonexpansive
(Lipschitz continuous with constant 1). The fixed points of (I + r−1T )−1 are the elements of the
closed convex set T−1(0). As long as that set is nonempty, convergence is guaranteed to a particular
element x̄ of that set, depending on the starting point, with ||xν+1 − x̄|| < ||xν − x̄|| unless already
xν = x̄. However, as will be important below, the algorithm can also be applied with “rescaling” in
the sense of replacing T by ATA for a symmetric positive-definite and invertible linear mapping A.
This preserves maximal monotonicity and leads instead to having the convergence obey

||A−1(xν+1 − x̄)|| < ||A−1(xν − x̄)|| unless xν = x̄. (2.7)

Convergence at a linear rate is guaranteed in some circumstances. For instance it always holds in our
finite-dimensional setting when T is piecewise polyhedral in the sense that the graph of T is the union
of a finite collection of polyhedral convex sets.

The device used to obtain the crucial mapping T in our situation is that of taking a “partial
inverse” of the mapping F +NC in the manner o Spingarn [24] by regarding the space L as the direct
sum of the subspaces N and M. Each x(·) ∈ L can be viewed uniquely as the sum of an element
of N and an element of M, namely PN (x(·)) and PM(x(·)), and these can be viewed as the two
“componenents” of x(·) in that representation.

6



Theorem 1 (extended derivation of the progressive hedging algorithm). The progressive hedging
algorithm for stochastic variational inequalities corresponds to applying the proximal point algorithm,
with rescaling, to determine a zero of the maximal monotone mapping T : L →→ L defined by

z(·) ∈ T (y(·)) ⇐⇒ PN (z(·)) + PM(y(·)) ∈ [F +NC ](PN (y(·)) + PM(z(·))). (2.8)

The rescaling replaces T by ATA for A : u(·) 7→ PN (u(·)) + rPM(u(·)).

Proof. Iterations for ATA have the form uν+1(·) = (I + r−1ATA)−1(uν(·)), or

uν(·) ∈ (I + r−1ATA)(uν+1(·)) = uν+1(·) + r−1AT (Auν+1(·)),

which in the rescaling with yν(·) = Auν(·) and yν+1(·) = Auν+1(·) can be written as

A−1yν(·)−A−1yν+1(·) ∈ r−1AT (yν+1(·)), or equivalently, rA−2[yν(·)− yν+1(·)] ∈ T (yν+1(·)).

Because A−2 takes y(·) to PN (y(·)) + r−2PM(y(·)), this has the form

PN (r[yν(·)− yν+1(·)]) + PM(r−1[yν(·)− yν+1(·)]) ∈ T (PN (yν+1(·)) + PM(yν+1(·)))

and corresponds under (2.8) to

PN
(
r[yν(·)− yν+1(·)]

)
+ PM

(
yν+1(·)

)
∈ [F +NC ]

(
PN (yν+1(·)) + PM(r−1[yν(·)− yν+1(·)])

)
. (2.9)

In setting

xν(·) = PN (yν(·)), wν(·) = −PM(yν(·)), xν+1(·) = PN (yν+1(·)), wν+1(·) = −PM(yν+1(·)),

we can pose the iterations expressed by (2.9) as

r[xν(·)− xν+1(·)]− wν+1(·) ∈ [F +NC ]
(
xν+1(·) + r−1(wν+1 − wν(·)

)
(2.10)

with respect to x(·)-elements in N and w(·)-elements inM. If we now introduce x̂ν(·) as standing for
xν+1(·) + r−1(wν+1(·)− wν(·)), we get

xν+1(·) = PN (x̂ν(·)), wν+1(·) = wν(·) + rPM(x̂ν(·)), (2.11)

and thereby convert (2.10) into r[xν(·)− PN (x̂ν(·))]−wν(·)− rPM(x̂ν(·)) ∈ [F +NC ](x̂
ν(·)), which is

the same as −wν(·) ∈ [F +NC ](x̂
ν(·)) + r[x̂ν(·)− xν(·)] and decomposes in the scenario structure to

−wν(ξ) ∈ [F (·, ξ) +NC(ξ)](x̂
ν(ξ)) + r[x̂ν(ξ)− xν(ξ)]. (2.12)

Since the progressive hedging algorithm solves (2.12) for each ξ to construct x̂ν(·) and then updates
by (2.11), our goal has been reached.

Theorem 2 (convergence of the algorithm). As long as the (monotone) variational inequality (1.10)
has at least one solution, the sequence of pairs (xν(·), wν(·)) generated by the progressive algorithm
will converge to some pair (x̄(·), w̄(·)) satisfying (1.11) and thus furnish x̄(·) as a solution to (1.10).
In this convergence the distance expressions

||xν(·)− x̄(·)||2 +
1

r2
||wν(·)− w̄(·)||2 (2.13)
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will form a decreasing sequence that goes to zero. The decrease will surely be at a linear rate if, in
particular, the sets C(ξ) are polyhedral and the functions F (·, ξ) are affine.

Proof. These properties translate from the corresponding ones for the proximal point algorithm
by way of the derivation in Theorem 1. For the final claim, the key is the fact that T has its graph
expressible as the union of finitely many convex polyhedral sets if and only if the mapping F + NC
(for which it is a “partial inverse”) has that property. When each F (·, ξ) is affine, F is affine and
the question comes down to the piecewise polyhedral nature of the graph of NC . That property holds
when C is a convex polyhedral set in L and therefore when each C(ξ) is polyhedral.

3 Application to stochastic complementarity problems

Our general concept of a multistage stochastic complementarity problem was explained at the end of
Section 1, but now we add more detail in terms of components of the functions Fk underlying the
mapping F with respect to IRn being the product space IRn1 × · · · × IRnN :

F (x(ξ), ξ) =
(
F1(x1(ξ), . . . , xN (ξ), ξ), . . . , FN (x1(ξ), . . . , xN (ξ), ξ)

)
. (3.1)

Specializing the stochastic variational inequality problem (1.15) in extensive form with its decomposi-
tion feature (1.16) in the context of the complementarity in (1.17), we arrive at the following statement
of a stochastic complementarity problem in extensive form:

find x(·) = (x1(·), . . . , xN (·)) ∈ N and w(·) = (w1(·), . . . , wN (·)) ∈M
such that 0 ≤ xk(ξ) ⊥ Fk(x1(ξ), . . . , xN (ξ), ξ) + wk(ξ) ≥ 0, ∀ξ, ∀k. (3.2)

Because the set C(ξ) is always IRn+ here, independent of ξ, this problem can also be stated equivalently
in a reduced form in which the elements wk(ξ) don’t appear:

determine (x1, x2(ξ1), x2(ξ1, ξ2), . . . , xN (ξ1, ξ2, . . . , ξN )) such that, at each stage k,

0 ≤ xk(ξ1, . . . , ξk−1) ⊥ Eξ | ξ1,...,ξk−1

[
Fk(x1(ξ), . . . , xN (ξ), ξ)

]
≥ 0, ∀(ξ1, . . . , ξk−1),

(3.3)

where the expectation is again the conditional expectation used in the definition of the subspaceM in
(1.5); see [23, (2.20)]. However, despite the appeal of the reduced version (3.3) for understanding the
nature of the problem, the version with elements wk(ξ) in (3.2) is the platform for finding a solution
by progressive hedging.

The progressive hedging algorithm in this setting, like always, has at the start of each iteration
some xν(·) = (xν1(·), . . . , xνN (·)) ∈ N and wν(·) = (wν1(·), . . . , wνN (·)) ∈M. In general it proceeds as in
(2.5) with updating based on the projection mappings as described in (2.1) and (2.2), but more can
be said about the special subproblems to be solved in each iteration. They are now complementarity
problems themselves which can be articulated in terms of the components x̂νk(ξ) of x̂ν(ξ):

x̂ν(ξ) = the unique x(ξ) such that 0 ≤ xk(ξ) ⊥ F νk (x(ξ), ξ) ≥ 0, where
F νk (x(ξ), ξ) = Fk(x(ξ), ξ) + wνk(ξ) + r[xk(ξ)− xνk(ξ)] for k = 1, . . . , N .

(3.4)

The strong monotonicity of F νk (·, ξ) induced by the r-term guarantees the existence and uniqueness.
To pursue this further for additional insights, let’s look more closely at the case of a stochastic

linear complementary problem, where

F (x(ξ), ξ) = M(ξ)x(ξ) + b(ξ) for M(ξ) ∈ IRn×n and b(ξ) ∈ IRn, (3.5)
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recalling that monotonicity in this situation corresponds to the positive semidefiniteness of the matrix
M(ξ), which is the same as the positive semidefiniteness of its symmetric part, 1

2 [M(ξ) + M(ξ)T ],
where “T” stands for the transpose. The subproblems solved in the progressive hedging algorithm to
get x̂ν(ξ) are then likewise linear complementarity problems, one for each scenario ξ:

0 ≤ x̂ν(ξ) ⊥ M(ξ)x̂ν(ξ) + b(ξ) + wν(ξ) + r[x̂ν(ξ)− xν(ξ)] ≥ 0. (3.6)

In terms of the submatrices Mkl(ξ) ∈ IRnk×nl of M(ξ) for k = 1, . . . , N and l = 1, . . . , N , and the
corresponding components bk(ξ) of b(ξ), the complementarity problem in the extensive form (3.2) in
the case of the mapping in (3.5) comes out through linearity as

find x(·) = (x1(·), . . . , xN (·)) ∈ N and w(·) = (w1(·), . . . , wN (·)) ∈M such that
0 ≤ xk(ξ) ⊥ Mk1(ξ)x1(ξ) + · · ·+MkN (ξ)xN (ξ) + bk(ξ) + wk(ξ) ≥ 0, ∀ξ, ∀k. (3.7)

The iteration subproblems can similarly be broken down for k = 1, . . . , N . Especially interesting,
though, is what happens when the progressive hedging algorithm is applied, because special facts
about monotone linear complementary problems observed by Cottle, Pang and Stone [5] can also be
brought in.

Theorem 3 (progressive hedging in stochastic linear complementarity). When applied to a monotone
stochastic linear complementarity problem, the progressive hedging algorithm can be executed by
minimizing in each iteration a strongly convex linear-quadratic function subject to linear constraints
having the special property that the unique Lagrange multiplier vector is the same as the unique
vector giving the minimum.

The sequences {xν(·)}∞ν=1 and {wν(·)}∞ν=1 thereby generated in N and M are sure to converge to
a solution pair x̄(·) and w̄(·), moreover at a linear rate: there will exist θ ∈ (0, 1) such that

||xν+1(·)− x̄(·)||2 +
1

r2
||wν+1(·)− w̄(·)||2 ≤ θ

(
||xν(·)− x̄(·)||2 +

1

r2
||wν(·)− w̄(·)||2

)
. (3.8)

Proof. As already seen, the subproblem to be solved in each iteration ν for each scenario ξ to get
x̂ν(ξ) is the linear complementarity problem (3.6), which can also be written as

0 ≤ x̂ν(ξ) ⊥ [M(ξ) + rI]x̂ν(ξ) + bν(ξ) ≥ 0, where bν(ξ) = b(ξ) + wν(ξ)− rxν(ξ). (3.9)

and is sure to be solvable. In terms of the gap function for this complementarity problem, namely the
quadratic function

qν(x, ξ) = 1
2x·[M(ξ) + rI]x+ bν(ξ)·x for x ∈ IRn, (3.10)

which is strongly convex, the set of solutions x̂ν(ξ) is{
x ∈ IRn+

∣∣∣ [M(ξ) + rI]x+ bν(ξ) ≥ 0 and qν(x, ξ) = 0
}
.

But qν(x) ≥ 0 when x ≥ 0 and [M(ξ) + rI]x+ bν(ξ) ≥ 0. Hence the unique solution for each ξ is

x̂ν(ξ) = argmin
x

{
qν(x, ξ)

∣∣∣x ≥ 0, [M(ξ) + rI]x+ bν(ξ) ≥ 0
}
. (3.11)

Thus the iterations can be executed by solving, for each ξ, a strongly convex quadratic programming
problem. This echoes a result presented in [5, Theorem 3.1.2] but with the added feature of strong
convexity coming from the positive definiteness of M(ξ) + rI. On the basis of the characterization in
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[5, Lemma 3.1.1] of the relationship here between optimal solution vectors and Lagrange multiplier
vectors, this strong convexity makes those vectors be unique and coincide.

The claim about convergence is justified the final assertion of Theorem 2 and the polyhedrality of
the orthant IRn+, which makes the graph of the mapping T in the application of the proximal point
algorithm behind the progressive hedging algorithm be piecewise polyhedral.

It’s worth emphasizing that the quadratic programming problems to be solved in (3.11) to obtain
each x̂ν(ξ) depend only on the symmetric part of the matrix M(ξ) and have r as a known modulus
of strong convexity. Moreover these subproblems differ from iteration to iteration only by shifts in the
bν(ξ) vectors in (3.9) as xν(ξ) and wν(ξ) pass to xν+1(ξ) and wν+1(ξ). This can open them up to
warm-start implementations.

4 Numerical experiments

To demonstrate how the progressive hedging algorithm performs numerically in solving stochastic vari-
ational inequalities, we focus on the two-stage case of linear complementarity, where ξ = (ξ1, . . . , ξN )
is replaced by ξ = ξ1. Then we have

M(ξ) =

[
M11(ξ) M12(ξ)
M21(ξ) M22(ξ)

]
, b(ξ) =

[
b1(ξ)
b2(ξ)

]
, (4.1)

with M(ξ)+M(ξ)T positive semidefinite, while elements x(·) of N and w(·) ofM in this context have
the form

x(ξ) =

[
x1

x2(ξ)

]
, w(ξ) =

[
w1(ξ)

0

]
with Eξ[w1(ξ)] = 0. (4.2)

As the corresponding instance of (3.7), we are looking for a pair as in (4.2) that satisfies, for every
ξ ∈ Ξ, the conditions

0 ≤ x1 ⊥ M11(ξ)x1 +M12(ξ)x2(ξ) + b1(ξ) + w1(ξ) ≥ 0,
0 ≤ x2(ξ) ⊥ M21(ξ)x1 +M22(ξ)x2(ξ) + b2(ξ) ≥ 0,

(4.3)

where the first condition is equivalent to

0 ≤ x1 ⊥ Eξ[M11(ξ)]x1 + Eξ[M12(ξ)x2(ξ)] + Eξ[b1(ξ)] ≥ 0. (4.4)

In the execution of the progressive hedging algorithm in this setting, we start each iteration with
some xν(·) ∈ N and wν(·) ∈ M and determine x̂ν(ξ) ∈ L (with components x̂ν1(ξ) and x̂ν2(ξ) both
depending on ξ) by solving for each ξ ∈ Ξ the linear complementarity problem

0 ≤ x̂ν1(ξ) ⊥ [M11(ξ) + rI]x̂ν1(ξ) +M12(ξ)x̂ν2(ξ) + bν1(ξ) ≥ 0,
0 ≤ x̂ν2(ξ) ⊥ M21(ξ)x̂ν1(ξ) + [M22(ξ) + rI]x̂ν2(ξ) + bν2(ξ) ≥ 0,

(4.5)

where
bν1(ξ)(ξ) = b1(ξ)− rxν1 + wν1(ξ), bν2(ξ) = b2(ξ)− rxν2(ξ), (4.6)

and the strong monotonicity induced by r guarantees the existence of a unique solution. This corre-
sponds to determining (x̂ν1(ξ), x̂ν2(ξ)) by minimizing the quadratic expression

1
2

(
x̂ν1(ξ)·[M11(ξ) + rI]x̂ν1(ξ) + x̂ν1(ξ)·[M12(ξ) +M21(ξ)]x̂ν2(ξ) + x̂ν2(ξ)·[M22(ξ) + rI]x̂ν2(ξ)

)
+bν1(ξ)·x̂ν1(ξ) + bν2(ξ)·x̂ν2(ξ),

(4.7)
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subject to the constraints

x̂ν1(ξ) ≥ 0, [M11(ξ) + rI]x̂ν1(ξ) +M12(ξ)x̂ν2(ξ) + bν1(ξ) ≥ 0,
x̂ν2(ξ) ≥ 0, M21(ξ)x̂ν1(ξ) + [M22(ξ) + rI]x̂ν2(ξ) + bν2(ξ) ≥ 0.

(4.8)

The update is given then by

xν+1
1 = Eξ[x̂

ν
1(ξ)], xν+1

2 (ξ) = x̂ν2(ξ), wν+1
1 (ξ) = wν1(ξ)− r[x̂ν1(ξ)− xν+1

1 ]. (4.9)

To solve linear complementary problem (4.5) for every ξ, we have several choices of methods. First,
we could convert the problem into a quadratic program as just described and use some quadratic
programming solver. Second, we could use a general solver for linear complementarity problems such
as the PATH solver (Dirkse, Ferris and Munson http://pages.cs.wisc.edu/ ferris/path.html). Third,
we could reformulate the problem as an nonsmooth equation and write a special code based on the
semismooth Newton method introduced in Qi and Sun [19]. After several rounds of experiments, we
finally opted for the third choice based on the following observations.

First, the speed of a quadratic solver depends on the problem type. A quadratic program can
be solved fast if the quadratic terms are sparse and if an interior point approach is used; otherwise,
it is generally slower than direct solvers for linear complementarity. Since our test problems are all
“unstructured and dense” through the random generation scheme utilized in our preliminary efforts
here, the quadratic programming approach is inferior to the other approaches. However, there is still
hope that the quadratic programming approach could be more efficient if the progressive hedging
scheme is used for real large scale problems with sparsity. Second, among the direct solvers for the
linear complementarity problem, the Newton-based algorithms are faster and more robust. Here by
“robust” we mean the algorithm is less dependent on the choice of parameters. Another motivation
for selecting the semismooth Newton method is the similarity of the linear complementarity problems
encountered in the progressive hedging process. This similarity can facilitate “warm starts” of the
Newton’s method. Namely, we can use the solutions xν(ξ) for each scenario in iteration ν to initiate
the solution of the subproblems in iteration ν + 1.

It can be readily verified that, in terms of P+ denoting the nearest-point projection mapping from
IRn onto its nonnegative orthant,

x ∈ IRn, 0 ≤ x ⊥Mx+ b ≥ 0 ⇐⇒ 0 = h(x) := x− P+(x−Mx− b). (4.10)

With m indexing the iterates in solving the equation h(x) = 0, our test code uses the formula

xm+1 = xm − θmJ̄h(xm)−1(xm) (4.11)

to determine the next iterate for a solution to (4.10), where J̄h(xm) is a matrix in the generalized
Jacobian of h at xm and θm is a step length. We use a Matlab code provided by Dr. Xudong Li of the
National University of Singapore for this procedure.

The problem data are randomly generated with the following guidelines, based on the fact that
M(ξ) in our framework of monotonicity must be the sum of a symmetric positive semidefinite matrix
and an arbitrary antisymetric matrix.

• Set rank s = d3(n1 + n2)/4e and, for each scenario ξ, generate random positive numbers ai(ξ)
for i = 1, ..., s along with random vectors vi(ξ) ∈ IRn1+n2 for i = 1, · · · , s. Obtain from these the
symmetric positive semidefinite matrix MS(ξ) =

∑s
i=1 ai(ξ)vi(ξ)vi(ξ)

T , where vi(ξ)
T is the row

vector transpose of the column vector vi(ξ).

11



• Randomly generate a nonzero antisymmetric matrix MA(ξ) for each ξ. Then let M(ξ) = MA(ξ)+
MS(ξ), which is guaranteed to be positive semidefinite but not symmetric.

• Randomly generate b1(ξ) and b2(ξ) for each ξ.

• Randomly generate the probabilities p(ξ) > 0 of the scenarios ξ.

The dimensions of x1(ξ) and x2(ξ) range from 15 to 500 while the number of scenarios (“sn” in the
tables) ranges from 5 to 200, which we think would cover the range of quite many problems arising
in practice. For each fixed dimension and number of scenarios, we generate 10 random problems
and count the average number of iterations (“avg iter” in the tables) and the average CPU time (in
seconds, “avg time (s)” in the tables). The stopping criterion we used is tied to the residual of |h(xν)|.
We set the tolerance to be 10−5 and the maximal iterations to be 1, 000, i.e., if the residual ≤ 10−5

or the iteration number ≥ 1, 000, the algorithm stops. The test code is written in Matlab and the
experiments are done on a laptop computer running WINDOWS 10.

The numerical testing begins by fixing r = 1 and solving problems of size

[dimension of x1, dimension of x2(ξ)]=[15,15].

We solve random problems with different numbers of scenarios, ranging from 5 to 200. The numerical
results are shown in Table 1 and the trend of convergence time vs. the number of scenarios is plotted
in Figure 1. From that we can see that the computation time grows roughly at a linear rate in response
to the increase of in the number of scenarios.

Table 1 Numerical results while sn increases
(dim=[15,15], fixed r=1)

sn avg-iter avg-time(s)

5 60.9 0.1

10 77.1 0.2

20 108.9 0.5

50 148.1 1.5

100 179.9 3.2

150 143.0 3.8

200 193.7 6.9
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Figure 1: Convergence time when number of scenarios increases

We next test the effect of the parameter r on the speed of convergence of the progressive hedging
algorithm. We re-solve the same problems by using a heuristic value of r =

√
n1 + n2, which yields

r =
√

30 for problem size [15,15]. The test results in Table 2, over all the various numbers of scenarios,
suggest that this value of r deserves to be explored for its possible advantages more broadly. The trend
of time vs. number of scenarios is depicted in Figure 2.

Table 2 Numerical results while sn increases (dim=[15,15])

sn
r=1 r=

√
30

avg-iter avg-time(s) avg-iter avg-time(s)

5 60.9 0.1 65.1 0.1

10 77.1 0.2 67.7 0.2

20 108.9 0.5 70.9 0.3

50 148.1 1.5 94.3 1.0

100 179.9 3.2 94.0 1.8

150 143.0 3.8 104.9 2.8

200 193.7 6.9 122.1 4.4
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Figure 2: Convergence time when number of scenarios increases

The third group of experiments is designed to see how efficient the progressive hedging algorithm
is in response to the growth in dimension of the decision variables in the stochastic linear complemen-
tarity problem, which is an indicator for the capability of this algorithm for solving general two-stage
stochastic variational inequalities. The size of the tested problems increases gradually from [15, 15]
to [500,500]. Note that the progressive hedging algorithm is reasonably fast — it only takes less than
fifteen minutes on average for solving a dense problem of 1,000 variables (i.e., n1 + n2 = 1, 000) at
r = 1. The results are in Table 3 and Figure 3. To check the advantage of our heuristic strategy for r,
we compare the results corresponding to different r in Table 4 and Figure 4. This reveals significant
savings in time if r =

√
n1 + n2 is used, at least in our limited setting. Further research will be needed

for better insights into the choice of r.

Table 3 Numerical results while dimension increases

(sn=100, fixed r=1)

dimension avg-iter avg-time(s)

[15,15] 179.9 3.2

[30,30] 208.0 4.3

[50,50] 148.5 4.3

[100,100] 289.8 12.3

[200,200] 535.3 49.8

[300,300] 509.3 118.9

[500,500] 876.6 709.8
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Figure 3: Convergence time when dimension increases

Table 4 Numerical results while dimension increases (sn=100)

dimension
r=1 r=

√
dim

avg-iter avg-time(s) avg-iter avg-time(s)

[15,15] 179.9 3.2 94.0 1.7

[30,30] 208.0 4.3 65.6 1.4

[50,50] 148.5 4.3 44.3 1.5

[100,100] 289.8 12.3 29.4 1.6

[200,200] 535.3 49.8 23.3 3.4

[300,300] 509.3 118.9 22.2 8.1

[500,500] 876.6 709.8 22.7 33.1
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Figure 4: Convergence time when dimension increases

In summary, our numerical experiments demonstrate that the progressive hedging algorithm can
be used for solving two-stage stochastic linear complementarity problems, which include two-stage
linear-quadratic stochastic programming problems and certain two-stage game problems as special
cases.

A notable advantage is the “warm start” feature of the progressive hedging algorithm. That is, for
each ξ, given xν(ξ), in order to solve the linear complementarity problem (3.9), we solve the nonsmooth
equation

hν(x) := x− P+[x− (M(ξ) + rI)x− bν(ξ)] = 0 (4.12)

by a semismooth Newton’s method. As is well known, Newton’s method is very efficient if the initial
point is well chosen. In our implementation, we use x̂ν(ξ) as the starting point for solving (4.12).
Since only bν(ξ) is “perturbed” when ν is updated, it is reasonable to use x̂ν(ξ) as a warm start point
to find x̂ν+1(ξ). The advantage of such a strategy is observed in all of the tested problems. Namely,
the solution time for x̂1(ξ), necessarily with a “cold start”, was several times slower than the time for
ν = 2, 3, ... for every ξ. This feature may be expected to persist when the problems under consideration
go from two stages to three or more stages. Computationally, it appears that the progressive hedging
algorithm provides a just-right platform for good performance of Newton-type methods.

Of course, the randomly generated problems in these tests are dense and do not necessarily repre-
sent the typical problems that would come up in real applications.
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[15] Iusem, A., Jofré, A., Oliveira, R. I., and Thompson, P., ‘Variance-based stochastic
extragradient methods with line search for stochastic variational inequalies,” submitted.

[16] Jiang, H., and Xu, H., “Stochastic approximation approaches to the stochastic variational
inequality problem,” IEEE Transactions on Automatic Control 53 (2008), 1462–1475.

17



[17] Lu, S., “Confidence regions for stohastic variational inequalities,” Mathematics of Operations
Research 38 (2013), 545–568.

[18] Philpott, A. B., Ferris, M. C., and Wets, R. J-B, “Equilibrium, uncertainty and risk in
hydro-thermal electricity systems,” Mathematical Programming B 157 (2016), 483–513.

[19] Qi, Liqun, and Sun, Jie, “A nonsmooth version of Newton’s method,” Mathematical Pro-
gramming 58 (1993), 353-367.

[20] Rockafellar, R. T., “Monotone operators and the proximal point algorithm.” SIAM J. Con-
trol Opt. 14 (1976), 877–898.

[21] Rockafellar, R. T., and Wets, R. J-B, “Scenarios and policy aggregation in optimization
under uncertainty.” Mathematics of Operations Research 16, 119–147.

[22] Rockafellar, R. T., and Wets, R. J-B, Variational Analysis, No. 317 in the series
Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, 1997.

[23] Rockafellar, R. T., and Wets, R. J-B, “Stochastic variational inequalities: single-stage
to multistage.” Mathematical Programming B 165 (2017), 291–330.

[24] Spingarn, J. E., “Partial inverse of a monotone operator,” Applied Mathematics and Opti-
mization 10 (1983), 247–265.

[25] Xu, H., “Sample average approximation methods for a class of variational inequality problems,”
Asia Pacific Journal of Operations Research 27 (2010), 103–119.

18


