77 research outputs found

    Chronic Helminth Infections Protect Against Allergic Diseases by Active Regulatory Processes

    Get PDF
    Developed countries are suffering from an epidemic rise in immunologic disorders, such as allergy-related diseases and certain autoimmunities. Several studies have demonstrated a negative association between helminth infections and inflammatory diseases (eg, allergy), providing a strong case for the involvement of helminth infections in this respect. However, some studies point in the opposite direction. The discrepancy may be explained by differences in frequency, dose, time, and type of helminth. In this review, new studies are discussed that may support the concept that chronic helminth infections in particular—but not acute infections—are associated with the expression of regulatory networks necessary for downmodulating allergic immune responses to harmless antigens. Furthermore, different components of regulatory networks are highlighted, such as the role of regulatory T and B cells, modulation of dendritic cells, early innate signals from structural cells (eg, epithelial cells), and their individual contributions to protection against allergic diseases. It is of great interest to define and characterize specific helminth molecules that have profound immunomodulatory capacities as targets for therapeutic application in the treatment or prophylaxis of allergic manifestations

    Apoptosis, autophagy, necroptosis, and cancer metastasis

    Get PDF

    Physical fitness and dementia risk in the very old:A study of the Lothian Birth Cohort 1921

    Get PDF
    Abstract Background Previous studies have demonstrated that individual measures of fitness – such as reduced pulmonary function, slow walking speed and weak handgrip – are associated with an increased risk of dementia. Only a minority of participants included in these studies were aged over 80. The aim of this study was therefore to investigate the association between physical fitness and dementia in the oldest old. Methods Subjects (n = 488) were enrolled in the Lothian Birth Cohort 1921 and aged 79 at baseline. Dementia cases arising after enrolment were determined using data from death certificates, electronic patient records and clinical reviews. Fitness measures included grip strength, forced expiratory volume in 1 s (FEV1) and walking speed over 6 m, measured at 79 years. Dementia risk associated with each fitness variable was initially determined by logistic regression analysis, followed by Cox regression analysis, where death was considered as a competing risk. APOE ε4 status, age, sex, height, childhood IQ, smoking, history of cardiovascular or cerebrovascular disease, hypertension and diabetes were included as additional variables. Cumulative incidence graphs were calculated using Aalen-Johansen Estimator. Results Although initial results indicated that greater FEV1 was associated with an increased risk of dementia (OR (odds ratio per unit increase) 1.93, p = 0.03, n = 416), taking into account the competing risk of mortality, none of the fitness measures were found to be associated with dementia; FEV1 (HR (hazard ratio per unit increase) 1.30, p = 0.37, n = 416), grip strength (HR 0.98, p = 0.35, n = 416), walking speed (HR 0.99, p = 0.90, n = 416). The presence of an APOE ɛ4 allele was however an important predictor for dementia (HR 2.85, p < 0.001, n = 416). Cumulative incidence graphs supported these findings, with an increased risk of dementia for APOE ɛ4 carriers compared with non-carriers. While increased FEV1 was associated with reduced risk of death, there was no reduction in risk for dementia. Conclusions In contrast to previous studies, this study found that lower fitness beyond age 79 was not a risk factor for subsequent dementia. This finding is not explained by those with poorer physical fitness, who would have been more likely to develop dementia, having died before onset of dementia symptoms

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    SheddomeDB: the ectodomain shedding database for membrane-bound shed markers

    Full text link
    corecore