16 research outputs found
Synaptic Depression Via Mglur1 Positive Allosteric Modulation Suppresses Cue-Induced Cocaine Craving
Cue-induced cocaine craving is a major cause of relapse in abstinent addicts. In rats, cue-induced craving progressively intensifies (incubates) during withdrawal from extended-access cocaine self-administration. After ~1 month of withdrawal, incubated craving is mediated by Ca(2+)-permeable AMPA receptors (CP-AMPARs) that accumulate in the nucleus accumbens (NAc). We found that decreased mGluR1 surface expression in the NAc preceded and enabled CP-AMPAR accumulation. Thus, restoring mGluR1 transmission by administering repeated injections of an mGluR1 positive allosteric modulator (PAM) prevented CP-AMPAR accumulation and incubation, whereas blocking mGluR1 transmission at even earlier withdrawal times accelerated CP-AMPAR accumulation. In studies conducted after prolonged withdrawal, when CP-AMPAR levels and cue-induced craving are high, we found that systemic administration of an mGluR1 PAM attenuated the expression of incubated craving by reducing CP-AMPAR transmission in the NAc to control levels. These results suggest a strategy in which recovering addicts could use a systemically active compound to protect against cue-induced relapse
MGluR5 mediates the interaction between late-LTP, network activity, and learning.
Hippocampal synaptic plasticity and learning are strongly regulated by metabotropic glutamate receptors (mGluRs) and particularly by mGluR5. Here, we investigated the mechanisms underlying mGluR5-modulation of these phenomena. Prolonged pharmacological blockade of mGluR5 with MPEP produced a profound impairment of spatial memory. Effects were associated with 1) a reduction of mGluR1a-expression in the dentate gyrus; 2) impaired dentate gyrus LTP; 3) enhanced CA1-LTP and 4) suppressed theta (5-10 Hz) and gamma (30-100 Hz) oscillations in the dentate gyrus. Allosteric potentiation of mGluR1 after mGluR5 blockade significantly ameliorated dentate gyrus LTP, as well as suppression of gamma oscillatory activity. CA3-lesioning prevented MPEP effects on CA1-LTP, suggesting that plasticity levels in CA1 are driven by mGluR5-dependent synaptic and network activity in the dentate gyrus. These data support the hypothesis that prolonged mGluR5-inactivation causes altered hippocampal LTP levels and network activity, which is mediated in part by impaired mGluR1-expression in the dentate gyrus. The consequence is impairment of long-term learning
Metabotropic glutamate receptors and neuroadaptation to antidepressants: imipramine-induced down-regulation of beta-adrenergic receptors in mice treated with metabotropic glutamate 2/3 receptor ligands.
Antidepressant drugs have a clinical latency that correlates with the development of neuroadaptive changes, including down-regulation of beta-adrenergic receptors in different brain regions. The identification of drugs that shorten this latency will have a great impact on the treatment of major depressive disorders. We report that the time required for the antidepressant imipramine to reduce the expression of beta-adrenergic receptors in the hippocampus is reduced by a co-administration with centrally active ligands of type 2/3 metabotropic glutamate (mGlu2/3) receptors. Daily treatment of mice with imipramine alone (10 mg/kg, i.p.) reduced the expression of beta-adrenergic receptors in the hippocampus after 21 days, but not at shorter times, as assessed by western blot analysis of beta1-adrenergic receptors and by the amount of specifically bound [3H]CGP-12177, a selective beta-adrenergic receptor ligand. Down-regulation of beta-adrenergic receptors occurred at shorter times (i.e. after 14 days) when imipramine was combined with low doses (0.5 mg/kg, i.p.) of the selective mGlu2/3 receptor agonist LY379268, or with the preferential mGlu2/3 receptor antagonist LY341495 (1 mg/kg, i.p.). Higher doses of LY379268 (2 mg/kg, i.p.) were inactive. This intriguing finding suggests that neuroadaptation to imipramine--at least as assessed by changes in the expression of beta1-adrenergic receptors--is influenced by drugs that interact with mGlu2/3 receptors and stimulates further research aimed at establishing whether any of these drugs can shorten the clinical latency of classical antidepressants
Is there a future for mGlu5-positive allosteric modulators in absence epilepsy? A comparison with ethosuximide
Contains fulltext :
175798.pdf (Publisher’s version ) (Open Access)Ethosuximide is the drug of choice in the treatment of various types of absence seizures. However, there is plenty of room for other anti-absence drugs, considering that not all subjects (57-74%) become seizure-free and about 47% of ethosuximide therapy fails. New anti-absence drugs may target or modulate glutamatergic and or GABAergic neurotransmission, the key players in the circuitry involved in the cortico-thalamo-cortical oscillations responsible for the highly stereotyped spike-wave discharges (SWDs). Cortical highly excitable cells in the focal region form the trigger for the occurrence of SWDs. In contrast, enhanced tonic inhibition is dominant in the thalamus. Biochemical studies have shown that symptomatic WAG/Rij rats differ from age-matched controls in metabotropic glutamate (mGlu) receptor expression and function: mGlu5 receptor expression and function are increased in the somatosensory cortex, and mGlu1 receptor expression is decreased in the thalamus. The two group I mGlu receptor-positive allosteric modulators (PAMs) VU0360172 and RO0711401 have an interesting profile in acute and (sub)chronic pharmacological studies and produce a dose-dependent decrease of SWDs. Moreover, both compounds are effective in reducing SWDs in the cortex and thalamus. Interestingly, the GABA reuptake blocker tiagabine reduces SWDs in the cortex and not in the thalamus, while the efficacy of ethosuximide is higher in the cortex than in the thalamus. It is thought that VU0360172 stimulates cortex GABA interneurons, which inhibit highly excitable cortical neurons in the focal area. In the thalamus, VU0360172 most likely reduces tonic inhibition. Thus, group I mGlu receptor PAMs might be further developed as anti-absence drugs, with putative disease-modifying effects on epileptogenesis. The preclinical profile of group I mGlu receptor PAMS deserves to be further explored in models of generalized epilepsy and focal types of epilepsy
Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation
High amounts of glutamate are found in the brains of people with multiple sclerosis, an inflammatory disease marked by progressive demyelination. Glutamate might affect neuroinflammation via effects on immune cells. Knockout mice lacking metabotropic glutamate receptor-4 (mGluR4) were markedly vulnerable to experimental autoimmune encephalomyelitis (EAE, a mouse model of multiple sclerosis) and developed responses dominated by interleukin-17-producing T helper (T(H)17) cells. In dendritic cells (DCs) from those mice, defective mGluR4 signaling-which would normally decrease intracellular cAMP formation-biased T(H) cell commitment to the T(H)17 phenotype. In wild-type mice, mGluR4 was constitutively expressed in all peripheral DCs, and this expression increased after cell activation. Treatment of wild-type mice with a selective mGluR4 enhancer increased EAE resistance via regulatory T (T(reg)) cells. The high amounts of glutamate in neuroinflammation might reflect a counterregulatory mechanism that is protective in nature and might be harnessed therapeutically for restricting immunopathology in multiple sclerosis