15 research outputs found

    Application of Surface wave methods for seismic site characterization

    Get PDF
    Surface-wave dispersion analysis is widely used in geophysics to infer a shear wave velocity model of the subsoil for a wide variety of applications. A shear-wave velocity model is obtained from the solution of an inverse problem based on the surface wave dispersive propagation in vertically heterogeneous media. The analysis can be based either on active source measurements or on seismic noise recordings. This paper discusses the most typical choices for collection and interpretation of experimental data, providing a state of the art on the different steps involved in surface wave surveys. In particular, the different strategies for processing experimental data and to solve the inverse problem are presented, along with their advantages and disadvantages. Also, some issues related to the characteristics of passive surface wave data and their use in H/V spectral ratio technique are discussed as additional information to be used independently or in conjunction with dispersion analysis. Finally, some recommendations for the use of surface wave methods are presented, while also outlining future trends in the research of this topic

    Surface Wave Detection with a Broad Band Accelerometer

    No full text

    Evaluation of candidate geomagnetic field models for IGRF-11

    Get PDF
    The eleventh generation of the International Geomagnetic Reference Field (IGRF) was agreed in December 2009 by a task force appointed by the International Association of Geomagnetism and Aeronomy (IAGA) Division VWorking Group V-MOD. New spherical harmonic main field models for epochs 2005.0 (DGRF-2005) and 2010.0 (IGRF-2010), and predictive linear secular variation for the interval 2010.0–2015.0 (SV-2010-2015) were derived from weighted averages of candidate models submitted by teams led by DTU Space, Denmark (team A); NOAA/NGDC, U.S.A. (team B); BGS, U.K. (team C); IZMIRAN, Russia (team D); EOST, France (team E); IPGP, France (team F); GFZ, Germany (team G) and NASA-GSFC, U.S.A. (team H). Here, we report the evaluations of candidate models carried out by the IGRF-11 task force during October/November 2009 and describe the weightings used to derive the new IGRF-11 model. The evaluations include calculations of root mean square vector field differences between the candidates, comparisons of the power spectra, and degree correlations between the candidates and a mean model. Coefficient by coefficient analysis including determination of weighting factors used in a robust estimation of mean coefficients is also reported. Maps of differences in the vertical field intensity at Earth’s surface between the candidates and weighted mean models are presented. Candidates with anomalous aspects are identified and efforts made to pinpoint both troublesome coefficients and geographical regions where large variations between candidates originate. A retrospective analysis of IGRF-10 main field candidates for epoch 2005.0 and predictive secular variation candidates for 2005.0–2010.0 using the new IGRF-11 models as a reference is also reported. The high quality and consistency of main field models derived using vector satellite data is demonstrated; based on internal consistency DGRF-2005 has a formal root mean square vector field error over Earth’s surface of 1.0 nT. Difficulties nevertheless remain in accurately forecasting field evolution only five years into the future

    Surface wave surveys for seismic site characterization of accelerometric stations in ITACA

    Get PDF
    One of the main objectives of the ITACA (ITalian ACcelerometric Archive) strong motion database, promoted by the Italian Department of Civil Protection, was to improve the characterization of the recording sites from a geological and geophysical point of view and to provide their seismic classification according to the seismic norms pertinent to Italy, namely the Eurocode 8 and the National Technical Norms for Constructions. A standard format to summarize the available information for the recording stations was first produced, in terms of a technical report dynamically linked to the database, i.e., some of the relevant information is automatically updated when the corresponding fields of the database are modified. Then, an important activity of collection, qualification and synthesis of available data was carried out, especially for stations that recorded the strongest earthquakes in Italy in the last 40 years, and for which a relevant number of studies have been published. In spite of this activity, among the more than 700 strong motion stations present in the ITACA database, only a limited number of them could be characterized by quantitative information on subsurface soil properties. For this reason, a dual seismic site classification criterion was implemented, either based on the standard Vs,30 scheme, or, in the absence of such information, based on an expert opinion supported by shallow geology maps, mostly at 1:100,000 scale, and when available on the H/V ratios calculated on recordings. Owing to the relevance in the Italian geographic and morphological context, a special care was also given to the topographic classification of stations, based on suitable criteria developed within a GIS environment
    corecore