28 research outputs found

    Prognostic impact of peritumoral lymphocyte infiltration in soft tissue sarcomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study was to clarify the prognostic significance of peritumoral lymphocyte infiltration in the capsule of soft tissue sarcomas (STS). Multiple observations in preclinical and clinical studies have shown that the immune system has a role in controlling tumor growth and progression. Prognostic markers in potentially curable STS should guide therapy after surgical resection. The immune status at the time of resection may be important, but the prognostic significance of peritumoral lymphocytes is unknown.</p> <p>Methods</p> <p>Tissue microarrays from 80 patients with STS were constructed from duplicate cores of tissue from the tumor and the peritumoral capsule. Immunohistochemistry was used to evaluate the CD3+, CD4+, CD8+ and CD20+ lymphocytes in the tumor and the peritumoral capsule.</p> <p>Results</p> <p>In univariate analyses, increasing numbers of CD20+ (<it>P </it>= 0.032) peritumoral lymphocytes were associated with a reduced disease free survival (DSS). In multivariate analyses, a high number of CD20+ peritumoral lymphocytes (<it>P </it>= 0.030) in the capsule was an independent negative prognostic factor for DSS. There were no such associations of lymphocyte infiltration in the tumor.</p> <p>Conclusions</p> <p>A high density of CD20+ peritumoral lymphocytes is an independent negative prognostic indicator for patients with STS. Further research is needed to determine whether CD20 cells in the peritumoral capsule of STS may promote tumor invasion in the surrounding tissue and increase the metastatic potential.</p

    Gitelman's Syndrome: characterization of a novel c.1181G>A point mutation and functional classification of the known mutations.

    No full text
    We have investigated the mechanisms by which a novel missense point mutation (c.1181G>A) found in two sisters causes Gitelman’s syndrome by impairing the sodium chloride co-transporter (NCC, encoded by SLC12A3 gene) function. The cDNA and in vitro transcribed mRNA of either wild-type or mutated SLC12A3 were transfected into HEK293 cells and injected into Xenopus laevis oocytes, respectively. The expression, maturation, trafficking, and function of the mutated and wild-type NCC were assessed by Western blotting, immunohistochemistry and 22Na+ uptake studies. By immunoblotting of lysates from HEK293 cells and oocytes expressing wild-type NCC, two NCC-related bands of approximately 130 kDa and 115 kDa, corresponding to fully and core-glycosylated NCC, respectively, were identified. In contrast, the mutant NCC only showed a single band of approximately 115 kDa, indicating impaired maturation of the protein. Moreover, oocytes injected with wild-type NCC showed thiazide-sensitive 22Na+ uptake, which was absent in those injected with the mutant NCC. The novel mutation was discussed in the context of the functionally characterized NCC mutations causing Gitelman’s syndrome, which fit into five classes. In conclusion, the functional characterization of this novel Gly394Asp NCC and its localization on the NCC structure, alongside that of previously known mutations causing Gitelman’s syndrome, may provide novel information on the function of the different domains of the human NCC
    corecore