43 research outputs found

    Investigation of cell cycle status in patients with acute myeloid leukaemia

    Get PDF
    Acute myeloid leukaemia (AML) is a biologically and clinically heterogeneous disease. Studies investigating heterogeneity in cell cycle status and response to treatment have been inconsistent, did not take into account the molecular features of the disease, and used blasts derived from aspirates (BMA) or peripheral blood (PB). The work in this thesis used the expression of the DNA replication licensing factors MCM2 (positive in non-G0 cells) geminin (positive in S/G2/M phase) in combination with MIB-1 (actively cycling cells) as assessed by immunohistochemistry and immunocytochemistry to define the cell cycle status of the blasts from PB, BMA, and biopsies (BMT). It shows that the majority of blasts in PB exist in a G1-arrested state and these blasts cause results derived from BMA or PB to significantly underestimate disease proliferation. Further experiments using flow cytometry and RNA sequencing support these conclusions and demonstrate that accurate assessment of cell cycle status in patients requires the use of BMT. A cohort of 181 patients with AML and available BMT for the assessment of DNA replication licensing factors was identified and defined for clinical, cytogenetic, and molecular features, and clinical outcome. The features of this cohort were consistent with those from large clinical trials. Increased expression of geminin and higher geminin/MIB-1 ratios (increased speed of cycling) were associated with NPM1 mutations and improved response to induction therapy in both univariate and multivariate analysis. Patients with lower geminin/MIB-1 ratios had increased rates of relapse and, in a landmark analysis from the second cycle of treatment, a trend towards inferior overall survival. These results suggest a mechanism for the improved response and decreased relapse risk seen in patients with NPM1 mutations and the potential clinical utility of examining DNA replication licensing factors

    A donor-specific epigenetic classifier for acute graft-versus-host disease severity in hematopoietic stem cell

    Get PDF
    Background Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative treatment for many hematological conditions. Acute graft-versus-host disease (aGVHD) is a prevalent immune-mediated complication following HSCT. Current diagnostic biomarkers that correlate with aGVHD severity, progression, and therapy response in graft recipients are insufficient. Here, we investigated whether epigenetic marks measured in peripheral blood of healthy graft donors stratify aGVHD severity in human leukocyte antigen (HLA)-matched sibling recipients prior to T cell-depleted HSCT. Methods We measured DNA methylation levels genome-wide at single-nucleotide resolution in peripheral blood of 85 HSCT donors, matched to recipients with various transplant outcomes, with Illumina Infinium HumanMethylation450 BeadChips. Results Using genome-wide DNA methylation profiling, we showed that epigenetic signatures underlying aGVHD severity in recipients correspond to immune pathways relevant to aGVHD etiology. We discovered 31 DNA methylation marks in donors that associated with aGVHD severity status in recipients, and demonstrated strong predictive performance of these markers in internal cross-validation experiments (AUC = 0.98, 95 % CI = 0.96–0.99). We replicated the top-ranked CpG classifier using an alternative, clinical DNA methylation assay (P = 0.039). In an independent cohort of 32 HSCT donors, we demonstrated the utility of the epigenetic classifier in the context of a T cell-replete conditioning regimen (P = 0.050). Conclusions Our findings suggest that epigenetic typing of HSCT donors in a clinical setting may be used in conjunction with HLA genotyping to inform both donor selection and transplantation strategy, with the ultimate aim of improving patient outcome

    The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K

    Get PDF
    Molecular glue compounds induce protein-protein interactions that, in the context of a ubiquitin ligase, lead to protein degradation1. Unlike traditional enzyme inhibitors, these molecular glue degraders act substoichiometrically to catalyse the rapid depletion of previously inaccessible targets2. They are clinically effective and highly sought-after, but have thus far only been discovered serendipitously. Here, through systematically mining databases for correlations between the cytotoxicity of 4,518 clinical and preclinical small molecules and the expression levels of E3 ligase components across hundreds of human cancer cell lines3-5, we identify CR8-a cyclin-dependent kinase (CDK) inhibitor6-as a compound that acts as a molecular glue degrader. The CDK-bound form of CR8 has a solvent-exposed pyridyl moiety that induces the formation of a complex between CDK12-cyclin K and the CUL4 adaptor protein DDB1, bypassing the requirement for a substrate receptor and presenting cyclin K for ubiquitination and degradation. Our studies demonstrate that chemical alteration of surface-exposed moieties can confer gain-of-function glue properties to an inhibitor, and we propose this as a broader strategy through which target-binding molecules could be converted into molecular glues

    Impact of Alemtuzumab Scheduling on Graft-versus-Host Disease after Unrelated Donor Fludarabine and Melphalan Allografts

    Get PDF
    Alemtuzumab conditioning is highly effective at reducing the incidence of acute and chronic graft-versus-host disease (GVHD) in reduced-intensity fludarabine and melphalan transplantation with cyclosporine monotherapy. Less frequent and lower dose scheduling may be used with sibling donors, but an optimal regimen for matched unrelated donors has not been defined. In this retrospective observational study of 313 patients, the incidence and severity of GVHD was compared in patients receiving 3 different dose schedules: the standard 100-mg regimen (20 mg on days –7 to –3), 60 mg (30 mg on days –4 and –2), or 50 mg (10 mg on days –7 to –3). Patients treated with 100 mg, 60 mg, or 50 mg developed acute GVHD grades I to IV with an incidence of 74%, 65%, and 64%, respectively, whereas 36%, 32%, and 41% developed chronic GHVD. An excess of severe acute grades III/IV GVHD was observed in the 50-mg cohort (15% versus 2% to 6%; P = .016). The relative risk of severe acute grade GVHD remained more than 3-fold higher in the 50-mg cohort compared with the 100-mg cohort after adjustment for differences in HLA match, age, gender mismatch, cytomegalovirus risk, and diagnosis (P = .030). The findings indicate that the 60-mg alemtuzumab schedule was comparable with the 100-mg schedule, but more attenuated schedules may increase the risk of severe grade GVHD

    Exploring medical student learning in the large group teaching environment: examining current practice to inform curricular development

    Get PDF
    Background Lectures continue to be an efficient and standardised way to deliver information to large groups of students. It has been well documented that students prefer interactive lectures, based on active learning principles, to didactic teaching in the large group setting. Despite this, it is often the case than many students do not engage with active learning tasks and attempts at interaction. By exploring student experiences, expectations and how they use lectures in their learning we will provide recommendations for faculty to support student learning both in the lecture theatre and during personal study time. Methods This research employed a hermeneutic phenomenological approach. Three focus groups, consisting of 19 students in total, were used to explore the experiences of second year medical students in large group teaching sessions. Using generic thematic data analysis, these accounts have been developed into a meaningful account of experience. Results This study found there to be a well-established learning culture amongst students and with it, expectations as to the format of teaching sessions. Furthermore, there were set perceptions about the student role within the learning environment which had many implications, including the way that innovative teaching methods were received. Student learning was perceived to take place outside the lecture theatre, with a large emphasis placed on creating resources that can be taken away to use in personal study time. Conclusions Presented here is a constructive review of reasons for student participation, interaction and engagement in large group teaching sessions. Based on this are recommendations constructed with the view to aid educators in engaging students within this setting. Short term, educators can implement strategies that monopolise on the established learning culture of students to encourage engagement with active learning strategies. Long term, it would be beneficial for educators to consider ways to shift the current student learning culture to one that embraces an active learning curriculum

    Genome-Wide Assessments Reveal Extremely High Levels of Polymorphism of Two Active Families of Mouse Endogenous Retroviral Elements

    Get PDF
    Endogenous retroviral elements (ERVs) in mice are significant genomic mutagens, causing ∼10% of all reported spontaneous germ line mutations in laboratory strains. The majority of these mutations are due to insertions of two high copy ERV families, the IAP and ETn/MusD elements. This significant level of ongoing retrotranspositional activity suggests that inbred mice are highly variable in content of these two ERV groups. However, no comprehensive genome-wide studies have been performed to assess their level of polymorphism. Here we compared three test strains, for which sufficient genomic sequence is available, to each other and to the reference C57BL/6J genome and detected very high levels of insertional polymorphism for both ERV families, with an estimated false discovery rate of only 0.4%. Specifically, we found that at least 60% of IAP and 25% of ETn/MusD elements detected in any strain are absent in one or more of the other three strains. The polymorphic nature of a set of 40 ETn/MusD elements found within gene introns was confirmed using genomic PCR on DNA from a panel of mouse strains. For some cases, we detected gene-splicing abnormalities involving the ERV and obtained additional evidence for decreased gene expression in strains carrying the insertion. In total, we identified nearly 700 polymorphic IAP or ETn/MusD ERVs or solitary LTRs that reside in gene introns, providing potential candidates that may contribute to gene expression differences among strains. These extreme levels of polymorphism suggest that ERV insertions play a significant role in genetic drift of mouse lines

    Genome-Wide Assessments Reveal Extremely High Levels of Polymorphism of Two Active Families of Mouse Endogenous Retroviral Elements

    Get PDF
    Endogenous retroviral elements (ERVs) in mice are significant genomic mutagens, causing ∼10% of all reported spontaneous germ line mutations in laboratory strains. The majority of these mutations are due to insertions of two high copy ERV families, the IAP and ETn/MusD elements. This significant level of ongoing retrotranspositional activity suggests that inbred mice are highly variable in content of these two ERV groups. However, no comprehensive genome-wide studies have been performed to assess their level of polymorphism. Here we compared three test strains, for which sufficient genomic sequence is available, to each other and to the reference C57BL/6J genome and detected very high levels of insertional polymorphism for both ERV families, with an estimated false discovery rate of only 0.4%. Specifically, we found that at least 60% of IAP and 25% of ETn/MusD elements detected in any strain are absent in one or more of the other three strains. The polymorphic nature of a set of 40 ETn/MusD elements found within gene introns was confirmed using genomic PCR on DNA from a panel of mouse strains. For some cases, we detected gene-splicing abnormalities involving the ERV and obtained additional evidence for decreased gene expression in strains carrying the insertion. In total, we identified nearly 700 polymorphic IAP or ETn/MusD ERVs or solitary LTRs that reside in gene introns, providing potential candidates that may contribute to gene expression differences among strains. These extreme levels of polymorphism suggest that ERV insertions play a significant role in genetic drift of mouse lines

    Identification and HLA-Tetramer-Validation of Human CD4(+) and CD8(+) T Cell Responses against HCMV Proteins IE1 and IE2

    Get PDF
    Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy
    corecore