640 research outputs found

    Becoming BDSM in an online environment

    Full text link

    Light sheet fluorescence microscopy optimized for long-term imaging of arabidopsis root development.

    Get PDF
    Light sheet fluorescence microscopy (LSFM) allows sustained and repeated optical sectioning of living specimens at high spatial and temporal resolution, with minimal photodamage. Here, we describe in detail both the hardware and the software elements of a live imaging method based on LSFM and optimized for tracking and 3D scanning of Arabidopsis root tips grown vertically in physiological conditions. The system is relatively inexpensive and with minimal footprint; hence it is well suited for laboratories of any size

    Locality in Theory Space

    Get PDF
    Locality is a guiding principle for constructing realistic quantum field theories. Compactified theories offer an interesting context in which to think about locality, since interactions can be nonlocal in the compact directions while still being local in the extended ones. In this paper, we study locality in "theory space", four-dimensional Lagrangians which are dimensional deconstructions of five-dimensional Yang-Mills. In explicit ultraviolet (UV) completions, one can understand the origin of theory space locality by the irrelevance of nonlocal operators. From an infrared (IR) point of view, though, theory space locality does not appear to be a special property, since the lowest-lying Kaluza-Klein (KK) modes are simply described by a gauged nonlinear sigma model, and locality imposes seemingly arbitrary constraints on the KK spectrum and interactions. We argue that these constraints are nevertheless important from an IR perspective, since they affect the four-dimensional cutoff of the theory where high energy scattering hits strong coupling. Intriguingly, we find that maximizing this cutoff scale implies five-dimensional locality. In this way, theory space locality is correlated with weak coupling in the IR, independent of UV considerations. We briefly comment on other scenarios where maximizing the cutoff scale yields interesting physics, including theory space descriptions of QCD and deconstructions of anti-de Sitter space.Comment: 40 pages, 11 figures; v2: references and clarifications added; v3: version accepted by JHE

    Shifts in the Properties of the Higgs Boson from Radion Mixing

    Get PDF
    We examine how mixing between the Standard Model Higgs boson, hh, and the radion present in the Randall-Sundrum model of localized gravity modifies the expected properties of the Higgs boson. In particular, we demonstrate that the total and partial decay widths of the Higgs, as well as the hggh\to gg branching fraction, can be substantially altered from their Standard Model expectations. The remaining branching fractions are modified less than \lsim 5% for most of the parameter space volume.Comment: 17 pages, 7 figs., LaTex; revised versio

    Top and Bottom Seesaw from Supersymmetric Strong Dynamics

    Get PDF
    We propose a top and bottom seesaw model with partial composite top and bottom quarks. Such composite quarks and topcolor gauge bosons are bound states from supersymmetric strong dynamics by Seiberg duality. Supersymmetry breaking also induces the breaking of topcolor into the QCD gauge coupling. The low energy description of our model reduces to a complete non-minimal extension of the top seesaw model with bottom seesaw. The non-minimal nature is crucial for Higgs mixings and the appearance of light Higgs fields. The Higgs fields are bound states of partial composite particles with the lightest one compatible with a 125 GeV Higgs field which was discovered at the LHC.Comment: Minor changes, Published Versio

    Mass-Matching in Higgsless

    Full text link
    Modern extra-dimensional Higgsless scenarios rely on a mass-matching between fermionic and bosonic KK resonances to evade constraints from precision electroweak measurements. After analyzing all of the Tevatron and LEP bounds on these so-called Cured Higgsless scenarios, we study their LHC signatures and explore how to identify the mass-matching mechanism, the key to their viability. We find singly and pair produced fermionic resonances show up as clean signals with 2 or 4 leptons and 2 hard jets, while neutral and charged bosonic resonances are visible in the dilepton and leptonic WZ channels, respectively. A measurement of the resonance masses from these channels shows the matching necessary to achieve S0S\simeq 0. Moreover, a large single production of KK-fermion resonances is a clear indication of compositeness of SM quarks. Discovery reach is below 10 fb1^{-1} of luminosity for resonances in the 700 GeV range.Comment: 28 pages, 18 figure

    One-Loop Calculation of the Oblique S Parameter in Higgsless Electroweak Models

    Get PDF
    We present a one-loop calculation of the oblique S parameter within Higgsless models of electroweak symmetry breaking and analyze the phenomenological implications of the available electroweak precision data. We use the most general effective Lagrangian with at most two derivatives, implementing the chiral symmetry breaking SU(2)_L x SU(2)_R -> SU(2)_{L+R} with Goldstones, gauge bosons and one multiplet of vector and axial-vector massive resonance states. Using the dispersive representation of Peskin and Takeuchi and imposing the short-distance constraints dictated by the operator product expansion, we obtain S at the NLO in terms of a few resonance parameters. In asymptotically-free gauge theories, the final result only depends on the vector-resonance mass and requires M_V > 1.8 TeV (3.8 TeV) to satisfy the experimental limits at the 3 \sigma (1\sigma) level; the axial state is always heavier, we obtain M_A > 2.5 TeV (6.6 TeV) at 3\sigma (1\sigma). In strongly-coupled models, such as walking or conformal technicolour, where the second Weinberg sum rule does not apply, the vector and axial couplings are not determined by the short-distance constraints; but one can still derive a lower bound on S, provided the hierarchy M_V < M_A remains valid. Even in this less constrained situation, we find that in order to satisfy the experimental limits at 3\sigma one needs M_{V,A} > 1.8 TeV.Comment: 34 pages, 9 figures. Version published in JHEP. Some references and sentences have been added to facilitate the discussio

    LHC Predictions from a Tevatron Anomaly in the Top Quark Forward-Backward Asymmetry

    Get PDF
    We examine the implications of the recent CDF measurement of the top-quark forward-backward asymmetry, focusing on a scenario with a new color octet vector boson at 1-3 TeV. We study several models, as well as a general effective field theory, and determine the parameter space which provides the best simultaneous fit to the CDF asymmetry, the Tevatron top pair production cross section, and the exclusion regions from LHC dijet resonance and contact interaction searches. Flavor constraints on these models are more subtle and less severe than the literature indicates. We find a large region of allowed parameter space at high axigluon mass and a smaller region at low mass; we match the latter to an SU(3)xSU(3)/SU(3) coset model with a heavy vector-like fermion. Our scenario produces discoverable effects at the LHC with only 1-2 inverse femtobarns of luminosity at 7-8 TeV. Lastly, we point out that a Tevatron measurement of the b-quark forward-backward asymmetry would be very helpful in characterizing the physics underlying the top-quark asymmetry.Comment: 35 pages, 10 figures, 4 table

    Spin-2 spectrum of defect theories

    Get PDF
    We study spin-2 excitations in the background of the recently-discovered type-IIB solutions of D'Hoker et al. These are holographically-dual to defect conformal field theories, and they are also of interest in the context of the Karch-Randall proposal for a string-theory embedding of localized gravity. We first generalize an argument by Csaki et al to show that for any solution with four-dimensional anti-de Sitter, Poincare or de Sitter invariance the spin-2 excitations obey the massless scalar wave equation in ten dimensions. For the interface solutions at hand this reduces to a Laplace-Beltrami equation on a Riemann surface with disk topology, and in the simplest case of the supersymmetric Janus solution it further reduces to an ordinary differential equation known as Heun's equation. We solve this equation numerically, and exhibit the spectrum as a function of the dilaton-jump parameter Δϕ\Delta\phi. In the limit of large Δϕ\Delta\phi a nearly-flat linear-dilaton dimension grows large, and the Janus geometry becomes effectively five-dimensional. We also discuss the difficulties of localizing four-dimensional gravity in the more general backgrounds with NS5-brane or D5-brane charge, which will be analyzed in detail in a companion paper.Comment: 41 pages, 6 figure
    corecore