18 research outputs found

    Proteome-Wide Search Reveals Unexpected RNA-Binding Proteins in Saccharomyces cerevisiae

    Get PDF
    The vast landscape of RNA-protein interactions at the heart of post-transcriptional regulation remains largely unexplored. Indeed it is likely that, even in yeast, a substantial fraction of the regulatory RNA-binding proteins (RBPs) remain to be discovered. Systematic experimental methods can play a key role in discovering these RBPs - most of the known yeast RBPs lack RNA-binding domains that might enable this activity to be predicted. We describe here a proteome-wide approach to identify RNA-protein interactions based on in vitro binding of RNA samples to yeast protein microarrays that represent over 80% of the yeast proteome. We used this procedure to screen for novel RBPs and RNA-protein interactions. A complementary mass spectrometry technique also identified proteins that associate with yeast mRNAs. Both the protein microarray and mass spectrometry methods successfully identify previously annotated RBPs, suggesting that other proteins identified in these assays might be novel RBPs. Of 35 putative novel RBPs identified by either or both of these methods, 12, including 75% of the eight most highly-ranked candidates, reproducibly associated with specific cellular RNAs. Surprisingly, most of the 12 newly discovered RBPs were enzymes. Functional characteristics of the RNA targets of some of the novel RBPs suggest coordinated post-transcriptional regulation of subunits of protein complexes and a possible link between mRNA trafficking and vesicle transport. Our results suggest that many more RBPs still remain to be identified and provide a set of candidates for further investigation

    Methodological Deficits in Diagnostic Research Using ‘-Omics’ Technologies: Evaluation of the QUADOMICS Tool and Quality of Recently Published Studies

    Get PDF
    Background: QUADOMICS is an adaptation of QUADAS (a quality assessment tool for use in systematic reviews of diagnostic accuracy studies), which takes into account the particular challenges presented by '-omics' based technologies. Our primary objective was to evaluate the applicability and consistency of QUADOMICS. Subsequently we evaluated and describe the methodological quality of a sample of recently published studies using the tool. Methodology/Principal Findings: 45'-omics'- based diagnostic studies were identified by systematic search of Pubmed using suitable MeSH terms (>Genomics>, >Sensitivity and specificity>, >Diagnosis>). Three investigators independently assessed the quality of the articles using QUADOMICS and met to compare observations and generate a consensus. Consistency and applicability was assessed by comparing each reviewer's original rating with the consensus. Methodological quality was described using the consensus rating. Agreement was above 80% for all three reviewers. Four items presented difficulties with application, mostly due to the lack of a clearly defined gold standard. Methodological quality of our sample was poor; studies met roughly half of the applied criteria (mean ¹ sd, 54.7¹18.4°%). Few studies were carried out in a population that mirrored the clinical situation in which the test would be used in practice, (6, 13.3%);none described patient recruitment sufficiently; and less than half described clinical and physiological factors that might influence the biomarker profile (20, 44.4%). Conclusions: The QUADOMICS tool can consistently be applied to diagnostic '-omics' studies presently published in biomedical journals. A substantial proportion of reports in this research field fail to address design issues that are fundamental to make inferences relevant for patient care. Š 2010 Parker et al.This work was supported by the Spanish Agency for Health Technology Assessment, Exp PI06/90311, Instituto de Salud Carlos III and CIBER en Epidemiología y Salud Pública (CIBERESP) in SpainPeer Reviewe

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/
    corecore