257 research outputs found

    Out of Africa: The role of institutional distance and host-home colonial tie in South African Firms’ post-acquisition performance in developed economies

    Get PDF
    The colonial ties and institutional distance affect the cross-border acquisition performance of internationalizing South African firms who acquire targets in developed economies. Along with these main effects, this paper examines the moderating effect of the colonial tie on the effects of institutional distance on post-acquisition long-term operating performance. Using data on South African acquisitions in developed economies, this study finds that the colonial tie has a negative impact on the long-term operating performance of South African acquirers. Yet, the colonial tie also moderates the effects of institutional distance. This work contributes to the discussion on host-home country institutional distance and its impact on post-acquisition long-term operating performance and how colonial past can influence the performance of acquirers from South Africa and other such countries with colonial history

    Age Matters: The Contingency of Economic Distance and Economic Freedom in Emerging Market Firm’s Cross-Border M&A Performance

    Get PDF
    The primary studies on emerging market multinational firms (EMFs) thus far have depicted a picture of accelerated internationalization in which EMFs conduct a series of aggressive cross-border acquisitions to further enhance their competitive advantage. However, it is not clear whether the EMFs which conducted the acquisitions at a young age experience better performance. EMFs constrained by their home market development in economic institutions may encounter different challenges in their cross-border acquisitions. Using a sample of South African firms’ acquisitions between 1994 and 2012, we find support for the benefit of foreign acquisitions at a young age as well as the moderation effects of economic distance and economic freedom. While early inorganic growth provides an excellent opportunity to propel South African firms’ growth, the country level factors present important boundary conditions to examine the benefit of early internationalization. While facing a significant economic distance, older firms are better at utilizing their experience and experience better post-acquisition operating performance. By contrast, the younger firms benefit more from the post-acquisition when the home country has weaker economic freedom

    Radiative Transfer for Exoplanet Atmospheres

    Full text link
    Remote sensing of the atmospheres of distant worlds motivates a firm understanding of radiative transfer. In this review, we provide a pedagogical cookbook that describes the principal ingredients needed to perform a radiative transfer calculation and predict the spectrum of an exoplanet atmosphere, including solving the radiative transfer equation, calculating opacities (and chemistry), iterating for radiative equilibrium (or not), and adapting the output of the calculations to the astronomical observations. A review of the state of the art is performed, focusing on selected milestone papers. Outstanding issues, including the need to understand aerosols or clouds and elucidating the assumptions and caveats behind inversion methods, are discussed. A checklist is provided to assist referees/reviewers in their scrutiny of works involving radiative transfer. A table summarizing the methodology employed by past studies is provided.Comment: 7 pages, no figures, 1 table. Filled in missing information in references, main text unchange

    Fabrication of Coaxial Si1−xGex Heterostructure Nanowires by O2 Flow-Induced Bifurcate Reactions

    Get PDF
    We report on bifurcate reactions on the surface of well-aligned Si1−xGex nanowires that enable fabrication of two different coaxial heterostructure nanowires. The Si1−xGex nanowires were grown in a chemical vapor transport process using SiCl4 gas and Ge powder as a source. After the growth of nanowires, SiCl4 flow was terminated while O2 gas flow was introduced under vacuum. On the surface of nanowires was deposited Ge by the vapor from the Ge powder or oxidized into SiO2 by the O2 gas. The transition from deposition to oxidation occurred abruptly at 2 torr of O2 pressure without any intermediate region and enables selectively fabricated Ge/Si1−xGex or SiO2/Si1−xGex coaxial heterostructure nanowires. The rate of deposition and oxidation was dominated by interfacial reaction and diffusion of oxygen through the oxide layer, respectively

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    NMR Characterizations of the Ice Binding Surface of an Antifreeze Protein

    Get PDF
    Antifreeze protein (AFP) has a unique function of reducing solution freezing temperature to protect organisms from ice damage. However, its functional mechanism is not well understood. An intriguing question concerning AFP function is how the high selectivity for ice ligand is achieved in the presence of free water of much higher concentration which likely imposes a large kinetic barrier for protein-ice recognition. In this study, we explore this question by investigating the property of the ice binding surface of an antifreeze protein using NMR spectroscopy. An investigation of the temperature gradient of amide proton chemical shift and its correlation with chemical shift deviation from random coil was performed for CfAFP-501, a hyperactive insect AFP. A good correlation between the two parameters was observed for one of the two Thr rows on the ice binding surface. A significant temperature-dependent protein-solvent interaction is found to be the most probable origin for this correlation, which is consistent with a scenario of hydrophobic hydration on the ice binding surface. In accordance with this finding, rotational correlation time analyses combined with relaxation dispersion measurements reveals a weak dimer formation through ice binding surface at room temperature and a population shift of dimer to monomer at low temperature, suggesting hydrophobic effect involved in dimer formation and hence hydrophobic hydration on the ice binding surface of the protein. Our finding of hydrophobic hydration on the ice binding surface provides a test for existing simulation studies. The occurrence of hydrophobic hydration on the ice binding surface is likely unnecessary for enhancing protein-ice binding affinity which is achieved by a tight H-bonding network. Subsequently, we speculate that the hydrophobic hydration occurring on the ice binding surface plays a role in facilitating protein-ice recognition by lowering the kinetic barrier as suggested by some simulation studies

    Magnetic resonance imaging for lung cancer detection: Experience in a population of more than 10,000 healthy individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent refinements of lung MRI techniques have reduced the examination time and improved diagnostic sensitivity and specificity. We conducted a study to assess the feasibility of MRI for the detection of primary lung cancer in asymptomatic individuals.</p> <p>Methods</p> <p>A retrospective chart review was performed on images of lung parenchyma, which were extracted from whole-body MRI examinations between October 2000 and December 2007. 11,766 consecutive healthy individuals (mean age, 50.4 years; 56.8% male) were scanned using one of two 1.5-T scanners (Sonata and Sonata Maestro, Siemens Medical Solutions, Erlangen, Germany). The standard protocol included a quick whole-lung survey with T2-weighted 2-dimensional half Fourier acquisition single shot turbo spin echo (HASTE) and 3-dimensional volumetric interpolated breath-hold examination (VIBE). Total examination time was less than 10 minutes, and scanning time was only 5 minutes. Prompt referrals and follow-ups were arranged in cases of suspicious lung nodules.</p> <p>Results</p> <p>A total of 559 individuals (4.8%) had suspicious lung nodules. A total of 49 primary lung cancers were diagnosed in 46 individuals: 41 prevalence cancers and 8 incidence cancers. The overall detection rate of primary lung cancers was 0.4%. For smokers aged 51 to 70 years, the detection rate was 1.4%. TNM stage I disease accounted for 37 (75.5%). The mean size of detected lung cancers was 1.98 cm (median, 1.5 cm; range, 0.5-8.2 cm). The most histological types were adenocarcinoma in 38 (77.6%).</p> <p>Conclusion</p> <p>Rapid zero-dose MRI can be used for lung cancer detection in a healthy population.</p

    Exclusion of NFAT5 from Mitotic Chromatin Resets Its Nucleo-Cytoplasmic Distribution in Interphase

    Get PDF
    The transcription factor NFAT5 is a major inducer of osmoprotective genes and is required to maintain the proliferative capacity of cells exposed to hypertonic stress. In response to hypertonicity, NFAT5 translocates to the nucleus, binds to regulatory regions of osmoprotective genes and activates their transcription. Besides stimulus-specific regulatory mechanisms, the activity of transcription factors in cycling cells is also regulated by the passage through mitosis, when most transcriptional processes are downregulated. It was not known whether mitosis could be a point of control for NFAT5.Using confocal microscopy we observed that NFAT5 was excluded from chromatin during mitosis in both isotonic and hypertonic conditions. Analysis of NFAT5 deletions showed that exclusion was mediated by the carboxy-terminal domain (CTD). NFAT5 mutants lacking this domain showed constitutive binding to mitotic chromatin independent of tonicity, which caused them to localize in the nucleus and remain bound to chromatin in the subsequent interphase without hypertonic stimulation. We analyzed the contribution of the CTD, DNA binding, and nuclear import and export signals to the subcellular localization of this factor. Our results indicated that cytoplasmic localization of NFAT5 in isotonic conditions required both the exclusion from mitotic DNA and active nuclear export in interphase. Finally, we identified several regions within the CTD of NFAT5, some of them overlapping with transactivation domains, which were separately capable of causing its exclusion from mitotic chromatin.Our results reveal a multipart mechanism regulating the subcellular localization of NFAT5. The transactivating module of NFAT5 switches its function from an stimulus-specific activator of transcription in interphase to an stimulus-independent repressor of binding to DNA in mitosis. This mechanism, together with export signals acting in interphase, resets the cytoplasmic localization of NFAT5 and prevents its nuclear accumulation and association with DNA in the absence of hypertonic stress
    corecore