55 research outputs found

    Multiple courses of stereotactic re-irradiation in recurrent oligodendroglioma: a case report

    Get PDF
    INTRODUCTION: High grade gliomas are an insidious disease associated with an extremely poor prognosis. The role of re-irradiation for recurrent gliomas is unclear but several retrospective studies have indicated mild toxicity and modest outcomes with this regimen. With subsequent progression, it is unclear what options remain and more radiotherapy is rarely offered for fear of surpassing normal central nervous system tissue tolerance and causing significant side effects without significant benefit. CASE PRESENTATION: In this report, we describe a 37-year-old Caucasian male initially diagnosed with a grade IV oligodendroglioma, who received multiple courses of re-irradiation and experienced a survival of 10 years with minimal cognitive or neurologic deficits. CONCLUSION: Significant toxicity with multiple courses of radiation does not always occur. Re-irradiation should be considered in a salvage setting

    Hypofractionated stereotactic re-irradiation: treatment option in recurrent malignant glioma

    Get PDF
    BACKGROUND: Hypofractionated stereotactic radiotherapy (HFSRT) is one salvage treatment option in previously irradiated patients with recurrent malignant glioma. We analyzed the results of HFSRT and prognostic factors in a single-institution series. METHODS: Between 1997 and 2003, 19 patients with recurrent malignant glioma (14 glioblastoma on most recent histology, 5 anaplastic astrocytoma) were treated with HFSRT. The median interval from post-operative radiotherapy to HFSRT was 19 (range 3–116) months, the median daily single dose 5 (4–10) Gy, the median total dose 30 (20–30) Gy and the median planning target volume 15 (4–70) ml. RESULTS: The median overall survival (OS) was 9.3 (1.9-77.6+) months from the time of HFSRT, 15.4 months for grade III and 7.9 months for grade IV tumors (p = 0.029, log-rank test). Two patients were alive at 34.6 and 77.6 months. OS was longer after a total dose of 30 Gy (11.1 months) than after total doses of <30 Gy (7.4 months; p = 0.051). Of five (26%) reoperations, none was performed for presumed or histologically predominant radiation necrosis. Median time to tumor progression after HFSRT on imaging was 4.9 months (1.3 to 37.3) months. CONCLUSION: HFSRT with conservative total doses of no more than 30 Gy is safe and leads to similar OS times as more aggressive treatment schemes. In individual patients, HFSRT in combination with other salvage treatment modalities, was associated with long-term survival

    Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme

    Get PDF
    Therapy options at the time of recurrence of glioblastoma multiforme are often limited. We investigated whether treatment with a new intratumoral thermotherapy procedure using magnetic nanoparticles improves survival outcome. In a single-arm study in two centers, 66 patients (59 with recurrent glioblastoma) received neuronavigationally controlled intratumoral instillation of an aqueous dispersion of iron-oxide (magnetite) nanoparticles and subsequent heating of the particles in an alternating magnetic field. Treatment was combined with fractionated stereotactic radiotherapy. A median dose of 30 Gy using a fractionation of 5 × 2 Gy/week was applied. The primary study endpoint was overall survival following diagnosis of first tumor recurrence (OS-2), while the secondary endpoint was overall survival after primary tumor diagnosis (OS-1). Survival times were calculated using the Kaplan–Meier method. Analyses were by intention to treat. The median overall survival from diagnosis of the first tumor recurrence among the 59 patients with recurrent glioblastoma was 13.4 months (95% CI: 10.6–16.2 months). Median OS-1 was 23.2 months while the median time interval between primary diagnosis and first tumor recurrence was 8.0 months. Only tumor volume at study entry was significantly correlated with ensuing survival (P < 0.01). No other variables predicting longer survival could be determined. The side effects of the new therapeutic approach were moderate, and no serious complications were observed. Thermotherapy using magnetic nanoparticles in conjunction with a reduced radiation dose is safe and effective and leads to longer OS-2 compared to conventional therapies in the treatment of recurrent glioblastoma

    RECIST revised: implications for the radiologist. A review article on the modified RECIST guideline

    Get PDF
    The purpose of this review article is to familiarize radiologists with the recently revised Response Evaluation Criteria in Solid Tumours (RECIST), used in many anticancer drug trials to assess response and progression rate. The most important modifications are: a reduction in the maximum number of target lesions from ten to five, with a maximum of two per organ, with a longest diameter of at least 10 mm; in lymph nodes (LNs) the short axis rather than the long axis should be measured, with normal LN measuring <10 mm, non-target LN ≥10 mm but <15 mm and target LN ≥15 mm; osteolytic lesions with a soft tissue component and cystic tumours may serve as target lesions; an additional requirement for progressive disease (PD) of target lesions is not only a ≥20% increase in the sum of the longest diameter (SLD) from the nadir but also a ≥5 mm absolute increase in the SLD (the other response categories of target lesion are unchanged); PD of non-target lesions can only be applied if the increase in non-target lesions is representative of change in overall tumour burden; detailed imaging guidelines. Alternative response criteria in patients with hepatocellular carcinoma and gastrointestinal stromal tumours are discussed

    Targeted therapies in renal cell cancer: recent developments in imaging

    Get PDF

    Role of stereotactic radiosurgery and fractionated stereotactic radiotherapy for the treatment of recurrent glioblastoma multiforme

    No full text
    Glioblastoma multiforme (GBM) is a devastating malignant brain tumor characterized by resistance to available therapeutic approaches and relentless malignant progression that includes widespread intracranial invasion, destruction of normal brain tissue, progressive disability, and death. Stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (fSRT) are increasingly used in patients with recurrent GBM to complement traditional treatments such as resection, conventional external beam radiotherapy, and chemotherapy. Both SRS and fSRT are powerful noninvasive therapeutic modalities well suited to treat focal neoplastic lesions through the delivery of precise, high-dose radiation. Although no randomized clinical trials have been performed, a variety of retrospective studies have been focused on the use of SRS and fSRT for recurrent GBMs. In addition, state-of-the-art neuroimaging techniques, such as MR spectroscopic imaging, diffusion tensor tractography, and nuclear medicine imaging, have enhanced treatment planning methods leading to potentially improved clinical outcomes. In this paper the authors reviewed the current applications and efficacy of SRS and fSRT in the treatment of GBM, highlighting the value of these therapies for recurrent focal disease. (DOI: 10.3171/2009.9.FOCUS09187
    corecore