7 research outputs found

    Vehicle Re-identification in Context

    Get PDF
    © 2019, Springer Nature Switzerland AG. Existing vehicle re-identification (re-id) evaluation benchmarks consider strongly artificial test scenarios by assuming the availability of high quality images and fine-grained appearance at an almost constant image scale, reminiscent to images required for Automatic Number Plate Recognition, e.g. VeRi-776. Such assumptions are often invalid in realistic vehicle re-id scenarios where arbitrarily changing image resolutions (scales) are the norm. This makes the existing vehicle re-id benchmarks limited for testing the true performance of a re-id method. In this work, we introduce a more realistic and challenging vehicle re-id benchmark, called Vehicle Re-Identification in Context (VRIC). In contrast to existing vehicle re-id datasets, VRIC is uniquely characterised by vehicle images subject to more realistic and unconstrained variations in resolution (scale), motion blur, illumination, occlusion, and viewpoint. It contains 60,430 images of 5,622 vehicle identities captured by 60 different cameras at heterogeneous road traffic scenes in both day-time and night-time. Given the nature of this new benchmark, we further investigate a multi-scale matching approach to vehicle re-id by learning more discriminative feature representations from multi-resolution images. Extensive evaluations show that the proposed multi-scale method outperforms the state-of-the-art vehicle re-id methods on three benchmark datasets: VehicleID, VeRi-776, and VRIC (Available at http://qmul-vric.github.io )

    Vehicle Detection Using Alex Net and Faster R-CNN Deep Learning Models: A Comparative Study

    Get PDF
    This paper has been presented at : 5th International Visual Informatics Conference (IVIC 2017)This paper presents a comparative study of two deep learning models used here for vehicle detection. Alex Net and Faster R-CNN are compared with the analysis of an urban video sequence. Several tests were carried to evaluate the quality of detections, failure rates and times employed to complete the detection task. The results allow to obtain important conclusions regarding the architectures and strategies used for implementing such network for the task of video detection, encouraging future research in this topic.S.A. Velastin is grateful to funding received from the Universidad Carlos III de Madrid, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 600371, el Ministerio de Economía y Competitividad (COFUND2013-51509) and Banco Santander. The authors wish to thank Dr. Fei Yin for the code for metrics employed for evaluations. Finally, we gratefully acknowledge the support of NVIDIA Corporation with the donation of the GPUs used for this research. The data and code used for this work is available upon request from the authors

    An Intelligent Method for Moving Object Detection

    No full text

    Coarse-to-fine: A RNN-based hierarchical attention model for vehicle re-identification

    No full text
    Vehicle re-identification is an important problem and becomes desirable with the rapid expansion of applications in video surveillance and intelligent transportation. By recalling the identification process of human vision, we are aware that there exists a native hierarchical dependency when humans identify different vehicles. Specifically, humans always firstly determine one vehicle’s coarse-grained category, i.e., the car model/type. Then, under the branch of the predicted car model/type, they are going to identify specific vehicles by relying on subtle visual cues, e.g., customized paintings and windshield stickers, at the fine-grained level. Inspired by the coarse-to-fine hierarchical process, we propose an end-to-end RNN-based Hierarchical Attention (RNN-HA) classification model for vehicle re-identification. RNN-HA consists of three mutually coupled modules: the first module generates image representations for vehicle images, the second hierarchical module models the aforementioned hierarchical dependent relationship, and the last attention module focuses on capturing the subtle visual information distinguishing specific vehicles from each other. By conducting comprehensive experiments on two vehicle re-identification benchmark datasets VeRi and VehicleID, we demonstrate that the proposed model achieves superior performance over state-of-the-art methods.Xiu-Shen Wei, B, Chen-Lin Zhang, Lingqiao Liu, Chunhua Shen, and Jianxin W
    corecore