89 research outputs found

    Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa

    Get PDF
    Groundwater in sub-Saharan Africa supports livelihoods and poverty alleviation1,2, maintains vital ecosystems, and strongly influences terrestrial water and energy budgets. Yet the hydrological processes that govern groundwater recharge and sustainability—and their sensitivity to climatic variability—are poorly constrained4. Given the absence of firm observational constraints, it remains to be seen whether model-based projections of decreased water resources in dry parts of the region4 are justified. Here we show, through analysis of multidecadal groundwater hydrographs across sub-Saharan Africa, that levels of aridity dictate the predominant recharge processes, whereas local hydrogeology influences the type and sensitivity of precipitation–recharge relationships. Recharge in some humid locations varies by as little as five per cent (by coefficient of variation) across a wide range of annual precipitation values. Other regions, by contrast, show roughly linear precipitation–recharge relationships, with precipitation thresholds (of roughly ten millimetres or less per day) governing the initiation of recharge. These thresholds tend to rise as aridity increases, and recharge in drylands is more episodic and increasingly dominated by focused recharge through losses from ephemeral overland flows. Extreme annual recharge is commonly associated with intense rainfall and flooding events, themselves often driven by large-scale climate controls. Intense precipitation, even during years of lower overall precipitation, produces some of the largest years of recharge in some dry subtropical locations. Our results therefore challenge the ‘high certainty’ consensus regarding decreasing water resources in such regions of sub-Saharan Africa. The potential resilience of groundwater to climate variability in many areas that is revealed by these precipitation–recharge relationships is essential for informing reliable predictions of climate-change impacts and adaptation strategies

    Application of multi‑method approach to assess groundwater–surface water interactions, for catchment management

    Get PDF
    Globally, the dependence of river systems to delayed discharge of subsurface water to augment flows during dry seasons is well documented. Discharge of fresh subsurface water can dilute concentrated river flow quality during reduced flow. Observed and reported results on the Berg River’s declining water quantity and quality are a concern to the regions socio-economic growth and environmental integrity. Understanding the role of subsurface water discharges on the quantity and quality of receiving surface water courses can improve their management during dry periods. A case study was designed and implemented in the upper Berg River catchment in the Western Cape Province of South Africa to assess the influence of groundwater–surface water interaction on water quantity and quality. This study aimed to quantify and characterize the quality of subsurface water available in the upper catchment to improve observed declining water quality downstream. Hydrograph separation provided estimates of water fluxes during 2012–2014 low and high flow periods, while hydrochemical analysis provided insights on impacts of major land use activity in this catchment on water resources. Hydrograph separation analysis indicated that the Berg River is 37.9% dependent on subsurface water discharges annually. Dominant Na–Cl-type water indicates the quality of water from the upper Berg River is largely affected by natural processes including short residence times of aquifer water, rock–water interactions and atmospheric deposition of NaCl ions. These results provide insights for suggesting management options to be implemented to protect subsurface water for continued dilution and water resources management in the lower catchments

    The Roles of the Dystrophin-Associated Glycoprotein Complex at the Synapse

    Full text link

    Squeezing information from regional climate change projections - results from a synthesis of CMIP5 results for south-east Queensland, Australia

    No full text
    We present a synthesis of CMIP5 model results for projected rainfall changes for a single region (south-east Queensland, Australia) and note that, as was evident in CMIP3 results, the multi-model mean projected changes for the late 21st century are not statistically significant for any season nor annually. Taking account of the number of statistically significant changes to mean rainfall, we find some evidence favouring a decrease in both spring and annual rainfall, but this is not compelling. In almost all cases the most frequent result is for no significant change. However, if we consider the number of results where there is a statistically significant change in the distributions of rainfall amounts, there appears to be slightly more information available for risk assessment studies. These numbers suggest an increase in the frequency of both wet and dry events during summer and spring, and a shift towards more frequent dry events during winter. There is no evidence for any significant changes to the distributions for either autumn or annually. The findings suggest that, in one respect, multi-model rainfall projections may contain more information than is evident from syntheses which focus on changes to the means and that, for some regions where changes in the frequency of wet and dry seasons/years have known impacts, the model projections may be more valuable than previously thought
    • 

    corecore