404 research outputs found

    Micro-pharmacokinetics: quantifying local drug concentration at live cell membranes

    Get PDF
    Fundamental equations for determining pharmacological parameters, such as the binding afnity of a ligand for its target receptor, assume a homogeneous distribution of ligand, with concentrations in the immediate vicinity of the receptor being the same as those in the bulk aqueous phase. It is, however, known that drugs are able to interact directly with the plasma membrane, potentially increasing local ligand concentrations around the receptor. We have previously reported an infuence of ligand-phospholipid interactions on ligand binding kinetics at the β2-adrenoceptor, which resulted in distinct “micro-pharmacokinetic” ligand profles. Here, we directly quantifed the local concentration of BODIPY630/650-PEG8-S-propranolol (BY-propranolol), a fuorescent derivative of the classical β-blocker propranolol, at various distances above membranes of single living cells using fuorescence correlation spectroscopy. We show for the frst time a signifcantly increased ligand concentration immediatel adjacent to the cell membrane compared to the bulk aqueous phase. We further show a clear role of both the cell membrane and the β2-adrenoceptor in determining high local BY-propranolol concentrations at the cell surface. These data suggest that the true binding afnity of BY-propranolol for the β2-adrenoceptor is likely far lower than previously reported and highlights the critical importance of understanding the “micro-pharmacokinetic” profles of ligands for membrane-associated proteins

    Molecular signatures (unique proteins and conserved indels) that are specific for the epsilon proteobacteria (Campylobacterales)

    Get PDF
    BACKGROUND: The epsilon proteobacteria, which include many important human pathogens, are presently recognized solely on the basis of their branching in rRNA trees. No unique molecular or biochemical characteristics specific for this group are known. RESULTS: Comparative analyses of proteins in the genomes of Wolinella succinogenes DSM 1740 and Campylobacter jejuni RM1221 against all available sequences have identified a large number of proteins that are unique to various epsilon proteobacteria (Campylobacterales), but whose homologs are not detected in other organisms. Of these proteins, 49 are uniquely found in nearly all sequenced epsilon-proteobacteria (viz. Helicobacter pylori (26695 and J99), H. hepaticus, C. jejuni (NCTC 11168, RM1221, HB93-13, 84-25, CF93-6, 260.94, 11168 and 81-176), C. lari, C. coli, C. upsaliensis, C. fetus, W. succinogenes DSM 1740 and Thiomicrospira denitrificans ATCC 33889), 11 are unique for the Wolinella and Helicobacter species (i.e. Helicobacteraceae family) and many others are specific for either some or all of the species within the Campylobacter genus. The primary sequences of many of these proteins are highly conserved and provide novel resources for diagnostics and therapeutics. We also report four conserved indels (i.e. inserts or deletions) in widely distributed proteins (viz. B subunit of exinuclease ABC, phenylalanyl-tRNA synthetase, RNA polymerase β '-subunit and FtsH protein) that are specific for either all epsilon proteobacteria or different subgroups. In addition, a rare genetic event that caused fusion of the genes for the largest subunits of RNA polymerase (rpoB and rpoC) in Wolinella and Helicobacter is also described. The inter-relationships amongst Campylobacterales as deduced from these molecular signatures are in accordance with the phylogenetic trees based on the 16S rRNA and concatenated sequences for nine conserved proteins. CONCLUSION: These molecular signatures provide novel tools for identifying and circumscribing species from the Campylobacterales order and its subgroups in molecular terms. Although sequence information for these signatures is presently limited to Campylobacterales species, it is likely that many of them will also be found in other epsilon proteobacteria. Functional studies on these proteins and conserved indels should reveal novel biochemical or physiological characteristics that are unique to these groups of epsilon proteobacteria

    Surgeon-Performed Ultrasound as Preoperative Localization Study in Patients with Primary Hyperparathyroidism

    Get PDF
    Background: Minimally invasive parathyroidectomy is the treatment of choice for single-gland primary hyperparathyroidism. However, the exact location of the abnormal gland has to be established. Sestamibi scintigraphy, computed tomography and ultrasound (US) are commonly used modalities. We describe our experience in a non-academic center with surgeon-performed US (S-US) of the neck as preoperative localization study in patients with primary hyperparathyroidism (PHPT). Methods: Patients with a biochemically proven diagnosis of PHPT and preoperative S-US were included. Data were recorded prospectively. Perioperative gland location was compared to the preoperative S-US to determine sensitivity, specificity and accuracy rates. Results: Two of the 50 patients who underwent S-US were not subjected to surgery. In 85% of the patients analyzed by S-US, the appropriate abnormal gland(s) were identified. In 11%, no gland was identified, but abnormal glands were found during surgery. Sensitivity of S-US in our hospital is 85%, with a positive predictive value of 97%. Conclusions: We achieved a satisfactory sensitivity rate. S-US provides anatomic information to the surgeon which enables a more detailed operation planning, and it is a valuable diagnostic modality for patients with PHPT in our opinion. We hope that our data encourage other centers to implement this technique as well. Copyrigh

    A qualitative study of nursing student experiences of clinical practice

    Get PDF
    BACKGROUND: Nursing student's experiences of their clinical practice provide greater insight to develop an effective clinical teaching strategy in nursing education. The main objective of this study was to investigate student nurses' experience about their clinical practice. METHODS: Focus groups were used to obtain students' opinion and experiences about their clinical practice. 90 baccalaureate nursing students at Shiraz University of Medical Sciences (Faculty of Nursing and Midwifery) were selected randomly from two hundred students and were arranged in 9 groups of ten students. To analyze the data the method used to code and categories focus group data were adapted from approaches to qualitative data analysis. RESULTS: Four themes emerged from the focus group data. From the students' point of view," initial clinical anxiety", "theory-practice gap"," clinical supervision", professional role", were considered as important factors in clinical experience. CONCLUSION: The result of this study showed that nursing students were not satisfied with the clinical component of their education. They experienced anxiety as a result of feeling incompetent and lack of professional nursing skills and knowledge to take care of various patients in the clinical setting

    Cardiac myosin binding protein C phosphorylation in cardiac disease

    Get PDF
    Perturbations in sarcomeric function may in part underlie systolic and diastolic dysfunction of the failing heart. Sarcomeric dysfunction has been ascribed to changes in phosphorylation status of sarcomeric proteins caused by an altered balance between intracellular kinases and phosphatases during the development of cardiac disease. In the present review we discuss changes in phosphorylation of the thick filament protein myosin binding protein C (cMyBP-C) reported in failing myocardium, with emphasis on phosphorylation changes observed in familial hypertrophic cardiomyopathy caused by mutations in MYBPC3. Moreover, we will discuss assays which allow to distinguish between functional consequences of mutant sarcomeric proteins and (mal)adaptive changes in sarcomeric protein phosphorylation

    Assembling the Marine Metagenome, One Cell at a Time

    Get PDF
    The difficulty associated with the cultivation of most microorganisms and the complexity of natural microbial assemblages, such as marine plankton or human microbiome, hinder genome reconstruction of representative taxa using cultivation or metagenomic approaches. Here we used an alternative, single cell sequencing approach to obtain high-quality genome assemblies of two uncultured, numerically significant marine microorganisms. We employed fluorescence-activated cell sorting and multiple displacement amplification to obtain hundreds of micrograms of genomic DNA from individual, uncultured cells of two marine flavobacteria from the Gulf of Maine that were phylogenetically distant from existing cultured strains. Shotgun sequencing and genome finishing yielded 1.9 Mbp in 17 contigs and 1.5 Mbp in 21 contigs for the two flavobacteria, with estimated genome recoveries of about 91% and 78%, respectively. Only 0.24% of the assembling sequences were contaminants and were removed from further analysis using rigorous quality control. In contrast to all cultured strains of marine flavobacteria, the two single cell genomes were excellent Global Ocean Sampling (GOS) metagenome fragment recruiters, demonstrating their numerical significance in the ocean. The geographic distribution of GOS recruits along the Northwest Atlantic coast coincided with ocean surface currents. Metabolic reconstruction indicated diverse potential energy sources, including biopolymer degradation, proteorhodopsin photometabolism, and hydrogen oxidation. Compared to cultured relatives, the two uncultured flavobacteria have small genome sizes, few non-coding nucleotides, and few paralogous genes, suggesting adaptations to narrow ecological niches. These features may have contributed to the abundance of the two taxa in specific regions of the ocean, and may have hindered their cultivation. We demonstrate the power of single cell DNA sequencing to generate reference genomes of uncultured taxa from a complex microbial community of marine bacterioplankton. A combination of single cell genomics and metagenomics enabled us to analyze the genome content, metabolic adaptations, and biogeography of these taxa

    Profiles of Small Non-Coding RNAs in Schistosoma japonicum during Development

    Get PDF
    Schistosomiasis, a debilitating disease, caused by agents of the genus Schistosoma afflicts more than 200 million people worldwide. Schistosomes could serve as an interesting model to explore gene regulation due to its evolutional position, complex life cycle and sexual dimorphism. We previously indicated that sncRNA profile in the parasite S. japonicum was developmentally regulated in hepatic and adult stages. In this study, we systematically investigated mircoRNA (miRNA) and endogenous siRNA (endo-siRNA) profile in this parasite in more detailed developmental stages (cercariae, lung-stage schistosomula, separated adult worms, and liver tissue-trapped eggs) using high-throughput RNA sequencing technology. We observed that the ratio of miRNAs to endo-siRNAs was dynamically changed throughout different developmental stages of the parasite. MiRNAs were expressed dominantly in cercariae, while endo-siRNAs accumulated in adult female worms and hepatic eggs. We demonstrated that miRNAs were mostly derived from intergenic regions whereas siRNAs were mostly derived from transposable elements. We also annotated miRNAs and siRNAs with stage- and gender- biased expression. Our findings would facilitate to understand the gene regulation mechanism of this parasite and discover novel targets for anti-parasite drugs

    DSM-5: a collection of psychiatrist views on the changes, controversies, and future directions

    Get PDF
    The recent release of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) by the American Psychiatric Association has led to much debate. For this forum article, we asked BMC Medicine Editorial Board members who are experts in the field of psychiatry to discuss their personal views on how the changes in DSM-5 might affect clinical practice in their specific areas of psychiatric medicine. This article discusses the influence the DSM-5 may have on the diagnosis and treatment of autism, trauma-related and stressor-related disorders, obsessive-compulsive and related disorders, mood disorders (including major depression and bipolar disorders), and schizophrenia spectrum disorders
    corecore