549 research outputs found

    Hex is a transcriptional repressor that contributes to anterior identity and suppresses Spemann organiser function

    Get PDF
    One of the earliest markers of anterior asymmetry in vertebrate embryos is the transcription factor Hex. We find that Hex is a transcriptional repressor that can be converted to an activator by fusing full length Hex to two copies of the minimal transcriptional activation domain of VP16 together with the flexible hinge region of the (lambda) repressor (Hex-(lambda)VP2). Retention of the entire Hex open reading frame allows one to examine Hex function without disrupting potential protein-protein interactions. Expression of Hex-(lambda)VP2 in Xenopus inhibits expression of the anterior marker Cerberus and results in anterior truncations. Such embryos have multiple notochords and disorganised muscle tissue. These effects can occur in a cell non-autonomous manner, suggesting that one role of wild-type Hex is to specify anterior structures by suppressing signals that promote dorsal mesoderm formation. In support of this idea, over-expression of wild-type Hex causes cell non-autonomous dorso-anteriorization, as well as cell autonomous suppression of dorsal mesoderm. Suppression of dorsal mesoderm by Hex is accompanied by the down-regulation of Goosecoid and Chordin, while induction of dorsal mesoderm by Hex-(lambda)VP2 results in activation of these genes. Transient transfection experiments in ES cells suggest that Goosecoid is a direct target of Hex. Together, our results support a model in which Hex suppresses organiser activity and defines anterior identity

    Low-Cost Air Quality Monitoring Tools: From Research to Practice (A Workshop Summary).

    Get PDF
    In May 2017, a two-day workshop was held in Los Angeles (California, U.S.A.) to gather practitioners who work with low-cost sensors used to make air quality measurements. The community of practice included individuals from academia, industry, non-profit groups, community-based organizations, and regulatory agencies. The group gathered to share knowledge developed from a variety of pilot projects in hopes of advancing the collective knowledge about how best to use low-cost air quality sensors. Panel discussion topics included: (1) best practices for deployment and calibration of low-cost sensor systems, (2) data standardization efforts and database design, (3) advances in sensor calibration, data management, and data analysis and visualization, and (4) lessons learned from research/community partnerships to encourage purposeful use of sensors and create change/action. Panel discussions summarized knowledge advances and project successes while also highlighting the questions, unresolved issues, and technological limitations that still remain within the low-cost air quality sensor arena

    Axial skeletal defects caused by mutation in the spondylocostal dysplasia/pudgy gene Dll3 are associated with disruption of the segmentation clock within the presomitic mesoderm

    Get PDF
    A loss-of-function mutation in the mouse delta-like3 (Dll3) gene has been generated following gene targeting, and results in severe axial skeletal defects. These defects, which consist of highly disorganised vertebrae and costal defects, are similar to those associated with the Dll3-dependent pudgy mutant in mouse and with spondylocostal dysplasia (MIM 277300) in humans. This study demonstrates that Dll3neo and Dll3pu are functionally equivalent alleles with respect to the skeletal dysplasia, and we suggest that the three human DLL3 mutations associated with spondylocostal dysplasia are also functionally equivalent to the Dll3neo null allele. Our phenotypic analysis of Dll3neo/Dll3neo mutants shows that the developmental origins of the skeletal defects lie in delayed and irregular somite formation, which results in the perturbation of anteroposterior somite polarity. As the expression of Lfng, Hes1, Hes5 and Hey1 is disrupted in the presomitic mesoderm, we suggest that the somitic aberrations are founded in the disruption of the segmentation clock that intrinsically oscillates within presomitic mesoderm

    Sister Mary Joseph's Nodule at a University Teaching Hospital in Northwestern Tanzania: A Retrospective Review of 34 cases.

    Get PDF
    Sister Mary Joseph's nodule is a metastatic tumor deposit in the umbilicus and often represents advanced intra-abdominal malignancy with dismal prognosis. There is a paucity of published data on this subject in our setting. This study was conducted to describe the clinicopathological presentation and treatment outcome of this condition in our environment and highlight challenges associated with the care of these patients, and to proffer solutions for improved outcome. This was a retrospective study of histologically confirmed cases of Sister Mary Joseph's nodule seen at Bugando Medical Centre between March 2003 and February 2013. Data collected were analyzed using descriptive statistics. A total of 34 patients were enrolled in the study. Males outnumbered females by a ratio of 1.4:1. The vast majority of patients (70.6%) presented with large umbilical nodule > 2 cm in size. The stomach (41.1%) was the most common location of the primary tumor. Adenocarcinoma (88.2%) was the most frequent histopathological type. Most of the primary tumors (52.9%) were poorly differentiated. As the disease was advanced and metastatic in all patients, only palliative therapy was offered. Out of 34 patients, 11 patients died in the hospital giving a mortality rate of 32.4%. Patients were followed up for 24 months. At the end of the follow-up period, 14(60.9%) patients were lost to follow-up and the remaining 9 (39.1%) patients died. Patients survived for a median period of 28 weeks (range, 2 to 64 weeks). The nodule recurred in 6 (26.1%) patients after complete excision. Sister Mary Joseph's nodule of the umbilicus is not rare in our environment and often represents manifestation of a variety of advanced intra-abdominal malignancies. The majority of the patients present at a late stage and many with distant metastases. The patient's survival is very short leading to a poor outcome. Early detection of primary cancer at an early stage may improve the prognosis

    The impact of low erythrocyte density in human blood on the fitness and energetic reserves of the African malaria vector Anopheles gambiae

    Get PDF
    Background Anaemia is a common health problem in the developing world. This condition is characterized by a reduction in erythrocyte density, primarily from malnutrition and/or infectious diseases such as malaria. As red blood cells are the primary source of protein for haematophagous mosquitoes, any reduction could impede the ability of mosquito vectors to transmit malaria by influencing their fitness or that of the parasites they transmit. The aim of this study was to determine the impact of differences in the density of red blood cells in human blood on malaria vector (Anopheles gambiae sensu stricto) fitness. The hypotheses tested are that mosquito vector energetic reserves and fitness are negatively influenced by reductions in the red cell density of host human blood meals commensurate with those expected from severe anaemia. Methods Mosquitoes (An. gambiae s.s.) were offered blood meals of different packed cell volume(PCV) of human blood consistent with those arising from severe anaemia (15%) and normalPCV (50%). Associations between mosquito energetic reserves (lipid, glucose and glycogen)and fitness measures (reproduction and survival) and blood meal PCV were investigated. Results The amount of protein that malaria vectors acquired from blood feeding (indexed by haematin excretion) was significantly reduced at low blood PCV. However, mosquitoes feeding on blood of low PCV had the same oviposition rates as those feeding on blood of normal PCV, and showed an increase in egg production of around 15%. The long-term survival of An. gambiae s.s was reduced after feeding on low PCV blood, but PCV had no significant impact on the proportion of mosquitoes surviving through the minimal period required to develop and transmit malaria parasites (estimated as 14 days post-blood feeding). The impact of blood PCV on the energetic reserves of mosquitoes was relatively minor. Conclusions These results suggest that feeding on human hosts whose PCV has been depleted due to severe anaemia does not significantly reduce the fitness or transmission potential of malaria vectors, and indicates that mosquitoes may be able exploit resources for reproduction more efficiently from blood of low rather than normal PCV

    Larval habitats of Anopheles gambiae s.s. (Diptera: Culicidae) influences vector competence to Plasmodium falciparum parasites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The origin of highly competent malaria vectors has been linked to productive larval habitats in the field, but there isn't solid quantitative or qualitative data to support it. To test this, the effect of larval habitat soil substrates on larval development time, pupation rates and vector competence of <it>Anopheles gambiae </it>to <it>Plasmodium falciparum </it>were examined.</p> <p>Methods</p> <p>Soils were collected from active larval habitats with sandy and clay substrates from field sites and their total organic matter estimated. <it>An. gambiae </it>larvae were reared on these soil substrates and the larval development time and pupation rates monitored. The emerging adult mosquitoes were then artificially fed blood with infectious <it>P. falciparum </it>gametocytes from human volunteers and their midguts examined for oocyst infection after seven days. The wing sizes of the mosquitoes were also measured. The effect of autoclaving the soil substrates was also evaluated.</p> <p>Results</p> <p>The total organic matter was significantly different between clay and sandy soils after autoclaving (P = 0.022). A generalized liner model (GLM) analysis identified habitat type (clay soil, sandy soil, or lake water) and autoclaving (that reduces presence of microbes) as significant factors affecting larval development time and oocyst infection intensities in adults. Autoclaving the soils resulted in the production of significantly smaller sized mosquitoes (P = 0.008). Autoclaving clay soils resulted in a significant reduction in <it>Plasmodium falciparum </it>oocyst intensities (P = 0.041) in clay soils (unautoclaved clay soils (4.28 Β± 0.18 oocysts/midgut; autoclaved clay soils = 1.17 Β± 0.55 oocysts/midgut) although no difference (P = 0.480) in infection rates was observed between clay soils (10.4%), sandy soils (5.3%) or lake water (7.9%).</p> <p>Conclusion</p> <p>This study suggests an important nutritional role for organic matter and microbial fauna on mosquito fitness and vector competence. It shows that the quality of natural aquatic habitats of mosquito larvae may influence malaria parasite transmission potential by <it>An. gambiae</it>. This information can be important in targeting larval habitats for malaria control.</p

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Do herbivorous minnows have β€œplug-flow reactor” guts? Evidence from digestive enzyme activities, gastrointestinal fermentation, and luminal nutrient concentrations

    Get PDF
    Few investigations have empirically analyzed fish gut function in the context of chemical reactor models. In this study, digestive enzyme activities, levels of gastrointestinal fermentation products [short chain fatty acids (SCFA)], luminal nutrient concentrations, and the mass of gut contents were measured along the digestive tract in herbivorous and carnivorous minnows to ascertain whether their guts function as β€œplug-flow reactors” (PFRs). Four of the species, Campostoma anomalum, C. ornatum, C. oligolepis, and C. pauciradii, are members of a monophyletic herbivorous clade, whereas the fifth species, Nocomis micropogon, is a carnivore from an adjacent carnivorous clade. In the context of a PFR model, the activities of amylase, trypsin and lipase, and the concentrations of glucose, protein, and lipid were predicted to decrease moving from the proximal to the distal intestine. I found support for this as these enzyme activities and nutrient concentrations generally decreased moving distally along the intestine of the four Campostoma species. Furthermore, gut content mass and the low SCFA concentrations did not change (increase or decrease) along the gut of any species. Combined with a previous investigation suggesting that species of Campostoma have rapid gut throughput rates, the data presented here generally support Campostoma as having guts that function as PFRs. The carnivorous N. micropogon showed some differences in the measured parameters, which were interpreted in the contexts of intake and retention time to suggest that PFR function breaks down in this carnivorous species

    Bone pain and extremely low bone mineral density due to severe vitamin D deficiency in celiac disease

    Get PDF
    Case report A 29-year-old wheelchair-bound woman was presented to us by the gastroenterologist with suspected osteomalacia. She had lived in the Netherlands all her life and was born of Moroccan parents. Her medical history revealed iron deficiency, growth retardation, and celiac disease, for which she was put on a gluten-free diet. She had progressive bone pain since 2 years, difficulty with walking, and about 15 kg weight loss. She had a short stature, scoliosis, and pronounced kyphosis of the spine and poor condition of her teeth. Laboratory results showed hypocalcemia, an immeasurable serum25-hydroxyvitamin D level, and elevated parathyroid hormone and alkaline phosphatase levels. Spinal radiographs showed unsharp, low contrast vertebrae. Bone mineral density measurement at the lumbar spine and hip showed a T-score of -6.0 and -6.5, respectively. A bone scintigraphy showed multiple hotspots in ribs, sternum, mandible, and long bones. A duodenal biopsy revealed villous atrophy (Marsh 3C) and positive antibodies against endomysium, transglutaminase, and gliadin, compatible with active celiac disease. A bone biopsy showed severe osteomalacia but normal bone volume. She was treated with calcium intravenously and later orally. Furthermore, she was treated with high oral doses of vitamin D and a gluten-free diet. After a few weeks of treatment, her bone pain decreased, and her muscle strength improved. Discussion In this article, the pathophysiology and occurrence of osteomalacia as a complication of celiac disease are discussed. Low bone mineral density can point to osteomalacia as well as osteoporosis. Β© International Osteoporosis Foundation and National Osteoporosis Foundation 2011
    • …
    corecore