695 research outputs found

    Protective role of vitamin B6 (PLP) against DNA damage in Drosophila models of type 2 diabetes

    Get PDF
    Growing evidence shows that improper intake of vitamin B6 increases cancer risk and several studies indicate that diabetic patients have a higher risk of developing tumors. We previously demonstrated that in Drosophila the deficiency of Pyridoxal 5' phosphate (PLP), the active form of vitamin B6, causes chromosome aberrations (CABs), one of cancer prerequisites, and increases hemolymph glucose content. Starting from these data we asked if it was possible to provide a link between the aforementioned studies. Thus, we tested the effect of low PLP levels on DNA integrity in diabetic cells. To this aim we generated two Drosophila models of type 2 diabetes, the first by impairing insulin signaling and the second by rearing flies in high sugar diet. We showed that glucose treatment induced CABs in diabetic individuals but not in controls. More interestingly, PLP deficiency caused high frequencies of CABs in both diabetic models demonstrating that hyperglycemia, combined to reduced PLP level, impairs DNA integrity. PLP-depleted diabetic cells accumulated Advanced Glycation End products (AGEs) that largely contribute to CABs as α-lipoic acid, an AGE inhibitor, rescued not only AGEs but also CABs. These data, extrapolated to humans, indicate that low PLP levels, impacting on DNA integrity, may be considered one of the possible links between diabetes and cancer

    Downsizing a human inflammatory protein to a small molecule with equal potency and functionality

    Get PDF
    A significant challenge in chemistry is to rationally reproduce the functional potency of a protein in a small molecule, which is cheaper to manufacture, non-immunogenic, and also both stable and bioavailable. Synthetic peptides corresponding to small bioactive protein surfaces do not form stable structures in water and do not exhibit the functional potencies of proteins. Here we describe a novel approach to growing small molecules with protein-like potencies from a functionally important amino acid of a protein. A 77-residue human inflammatory protein (complement C3a) important in innate immunity is rationally transformed to equipotent small molecules, using peptide surrogates that incorporate a turn-inducing heterocycle with correctly positioned hydrogen-bond-accepting atoms. Small molecule agonists (molecular weigh

    Cytosolic Superoxide Dismutase (SOD1) Is Critical for Tolerating the Oxidative Stress of Zinc Deficiency in Yeast

    Get PDF
    Zinc deficiency causes oxidative stress in many organisms including the yeast Saccharomyces cerevisiae. Previous studies of this yeast indicated that the Tsa1 peroxiredoxin is required for optimal growth in low zinc because of its role in degrading H2O2. In this report, we assessed the importance of other antioxidant genes to zinc-limited growth. Our results indicated that the cytosolic superoxide dismutase Sod1 is also critical for growth under zinc-limiting conditions. We also found that Ccs1, the copper-delivering chaperone required for Sod1 activity is essential for optimal zinc-limited growth. To our knowledge, this is the first demonstration of the important roles these proteins play under this condition. It has been proposed previously that a loss of Sod1 activity due to inefficient metallation is one source of reactive oxygen species (ROS) under zinc-limiting conditions. Consistent with this hypothesis, we found that both the level and activity of Sod1 is diminished in zinc-deficient cells. However, under conditions in which Sod1 was overexpressed in zinc-limited cells and activity was restored, we observed no decrease in ROS levels. Thus, these data indicate that while Sod1 activity is critical for low zinc growth, diminished Sod1 activity is not a major source of the elevated ROS observed under these conditions

    Does the history of food energy units suggest a solution to "Calorie confusion"?

    Get PDF
    The Calorie (kcal) of present U.S. food labels is similar to the original French definition of 1825. The original published source (now available on the internet) defined the Calorie as the quantity of heat needed to raise the temperature of 1 kg of water from 0 to 1°C. The Calorie originated in studies concerning fuel efficiency for the steam engine and had entered dictionaries by 1840. It was the only energy unit in English dictionaries available to W.O. Atwater in 1887 for his popular articles on food and tables of food composition. Therefore, the Calorie became the preferred unit of potential energy in nutrition science and dietetics, but was displaced when the joule, g-calorie and kcal were introduced. This article will explain the context in which Nicolas Clément-Desormes defined the original Calorie and the depth of his collaboration with Sadi Carnot. It will review the history of other energy units and show how the original Calorie was usurped during the period of international standardization. As a result, no form of the Calorie is recognized as an SI unit. It is untenable to continue to use the same word for different thermal units (g-calorie and kg-calorie) and to use different words for the same unit (Calorie and kcal). The only valid use of the Calorie is in common speech and public nutrition education. To avoid ongoing confusion, scientists should complete the transition to the joule and cease using kcal in any context

    Measuring and Comparing Party Ideology and Heterogeneity

    Get PDF
    Estimates of party ideological positions in Western Democracies yield useful party-level information, but lack the ability to provide insight into intraparty politics. In this paper, we generate comparable measures of latent individual policy positions from elite survey data which enable analysis of elite-level party ideology and heterogeneity. This approach has advantages over both expert surveys and approaches based on behavioral data, such as roll call voting and is directly relevant to the study of party cohesion. We generate a measure of elite positions for several European countries using a common space scaling approach and demonstrate its validity as a measure of party ideology. We then apply these data to determine the sources of party heterogeneity, focusing on the role of intraparty competition in electoral systems, nomination rules, and party goals. We find that policy-seeking parties and centralized party nomination rules reduce party heterogeneity. While intraparty competition has no effect, the presence of these electoral rules conditions the effect of district magnitude

    Complement Inhibition Promotes Endogenous Neurogenesis and Sustained Anti-Inflammatory Neuroprotection following Reperfused Stroke

    Get PDF
    The restoration of blood-flow following cerebral ischemia incites a series of deleterious cascades that exacerbate neuronal injury. Pharmacologic inhibition of the C3a-receptor ameliorates cerebral injury by attenuating post-ischemic inflammation. Recent reports also implicate C3a in the modulation of tissue repair, suggesting that complement may influence both injury and recovery at later post-ischemic time-points.To evaluate the effect of C3a-receptor antagonism on post-ischemic neurogenesis and neurological outcome in the subacute period of stroke, transient focal cerebral ischemia was induced in adult male C57BL/6 mice treated with multiple regimens of a C3a receptor antagonist (C3aRA).Low-dose C3aRA administration during the acute phase of stroke promotes neuroblast proliferation in the subventricular zone at 7 days. Additionally, the C3a receptor is expressed on T-lymphocytes within the ischemic territory at 7 days, and this cellular infiltrate is abrogated by C3aRA administration. Finally, C3aRA treatment confers robust histologic and functional neuroprotection at this delayed time-point.Targeted complement inhibition through low-dose antagonism of the C3a receptor promotes post-ischemic neuroblast proliferation in the SVZ. Furthermore, C3aRA administration suppresses T-lymphocyte infiltration and improves delayed functional and histologic outcome following reperfused stroke. Post-ischemic complement activation may be pharmacologically manipulated to yield an effective therapy for stroke

    Degradation of aflatoxin B1 from naturally contaminated maize using the edible fungus Pleurotus ostreatus

    Get PDF
    Aflatoxins are highly carcinogenic secondary metabolites that can contaminate approximately 25% of crops and that cause or exacerbate multiple adverse health conditions, especially in Sub-Saharan Africa and South and Southeast Asia. Regulation and decontamination of aflatoxins in high exposure areas is lacking. Biological detoxification methods are promising because they are assumed to be cheaper and more environmentally friendly compared to chemical alternatives. White-rot fungi produce non-specific enzymes that are known to degrade aflatoxin in in situ and ex situ experiments. The aims of this study were to (1) decontaminate aflatoxin-B-1-(AFB(1)) in naturally contaminated maize with the edible, white-rot fungus Pleurotus ostreatus (oyster mushroom) using a solid-state fermentation system that followed standard cultivation techniques, and to (2) and to assess the risk of mutagenicity in the resulting breakdown products and mushrooms. Vegetative growth and yield characteristics of P. ostreatus were not inhibited by the presence of-AFB(1).-AFB(1) was degraded by up to 94% by the Blue strain. No aflatoxin could be detected in P. ostreatus mushrooms produced from-AFB(1)-contaminated maize. Moreover, the mutagenicity of breakdown products from the maize substrate, and reversion of breakdown products to the parent compound, were minimal. These results suggest that P. ostreatus significantly degrades-AFB(1) in naturally contaminated maize under standard cultivation techniques to levels that are acceptable for some livestock fodder, and that using P. ostreatus to bioconvert crops into mushrooms can reduce-AFB(1)-related losses.University of Arizona Green Fund [GF 15.31]Open Access Journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Three dimensional electron microscopy reveals changing axonal and myelin morphology along normal and partially injured optic nerves

    Get PDF
    Following injury to the central nervous system, axons and myelin distinct from the initial injury site undergo changes associated with compromised function. Quantifying such changes is important to understanding the pathophysiology of neurotrauma; however, most studies to date used 2 dimensional (D) electron microscopy to analyse single sections, thereby failing to capture changes along individual axons. We used serial block face scanning electron microscopy (SBF SEM) to undertake 3D reconstruction of axons and myelin, analysing optic nerves from normal uninjured female rats and following partial optic nerve transection. Measures of axon and myelin dimensions were generated by examining 2D images at 5 µm intervals along the 100 µm segments. In both normal and injured animals, changes in axonal diameter, myelin thickness, fiber diameter, G-ratio and percentage myelin decompaction were apparent along the lengths of axons to varying degrees. The range of values for axon diameter along individual reconstructed axons in 3D was similar to the range from 2D datasets, encompassing reported variation in axonal diameter attributed to retinal ganglion cell diversity. 3D electron microscopy analyses have provided the means to demonstrate substantial variability in ultrastructure along the length of individual axons and to improve understanding of the pathophysiology of neurotrauma

    The Inclusiveness and Emptiness of <i>Gong Qi</i>: A Non-Anglophone Perspective on Ethics from a Sino-Japanese Corporation

    Get PDF
    This article introduces a non-Anglophone concept of gong qi(communal vessel, 公器) as a metaphor for ‘corporation’. It contributes an endogenous perspective from a Sino-Japanese organizational context that enriches mainstream business ethics literature, otherwise heavily reliant on Western traditions. We translate the multi-layered meanings of gong qi based on analysis of its ideograms, its references into classical philosophies, and contemporary application in this Japanese multinational corporation in China. Gong qi contributes a perspective that sees a corporation as an inclusive and virtuous social entity, and also addresses the elusive, implicit, and forever evolving nature of organizational life that is rarely noticed. We propose gong qi can be applied in other organizations and wider cultural contexts to show a new way of seeing and understanding business ethics and organization. Rather than considering virtue as a list of definable individual qualities, we suggest that the metaphor of gong qi reveals how virtue can be experienced as indeterminate, yet immanently present, like the substance of emptiness. This, then allows us to see the virtue of immanence, the beauty of implicitness, and hence, the efficacy of gong qi

    Identification of Candida glabrata genes involved in pH modulation and modification of the phagosomal environment in macrophages

    Get PDF
    notes: PMCID: PMC4006850types: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov'tCandida glabrata currently ranks as the second most frequent cause of invasive candidiasis. Our previous work has shown that C. glabrata is adapted to intracellular survival in macrophages and replicates within non-acidified late endosomal-stage phagosomes. In contrast, heat killed yeasts are found in acidified matured phagosomes. In the present study, we aimed at elucidating the processes leading to inhibition of phagosome acidification and maturation. We show that phagosomes containing viable C. glabrata cells do not fuse with pre-labeled lysosomes and possess low phagosomal hydrolase activity. Inhibition of acidification occurs independent of macrophage type (human/murine), differentiation (M1-/M2-type) or activation status (vitamin D3 stimulation). We observed no differential activation of macrophage MAPK or NFκB signaling cascades downstream of pattern recognition receptors after internalization of viable compared to heat killed yeasts, but Syk activation decayed faster in macrophages containing viable yeasts. Thus, delivery of viable yeasts to non-matured phagosomes is likely not triggered by initial recognition events via MAPK or NFκB signaling, but Syk activation may be involved. Although V-ATPase is abundant in C. glabrata phagosomes, the influence of this proton pump on intracellular survival is low since blocking V-ATPase activity with bafilomycin A1 has no influence on fungal viability. Active pH modulation is one possible fungal strategy to change phagosome pH. In fact, C. glabrata is able to alkalinize its extracellular environment, when growing on amino acids as the sole carbon source in vitro. By screening a C. glabrata mutant library we identified genes important for environmental alkalinization that were further tested for their impact on phagosome pH. We found that the lack of fungal mannosyltransferases resulted in severely reduced alkalinization in vitro and in the delivery of C. glabrata to acidified phagosomes. Therefore, protein mannosylation may play a key role in alterations of phagosomal properties caused by C. glabrata.Deutsche ForschungsgemeinschaftNational Institutes for HealthWellcome TrustBBSR
    • …
    corecore