12 research outputs found

    Reliability of Bidirectional and Variable-Opening Equipment for the Measurement of Pelvic Floor Muscle Strength

    No full text
    Objective: In evaluating pelvic floor muscles, it is important to use reliable and accurate methods. Therefore the objective of this study was to verify the reliability of bidirectional and variable-opening equipment designed to measure anteroposterior and left-right strength of pelvic floor muscles. Design: Test-retest to assess reliability. Setting: Academic institution, primary level of clinical care. Participants: Seventeen nulliparous women between 20 and 33 years of age participated in the procedure during 3 consecutive weeks. Methods: A dynamometer was used to evaluate pelvic floor muscle strength. The reliability was tested in 3 sessions, with a 7-day interval between, excluding premenstrual and menstrual periods. On each day of data collection, 3 maximum voluntary contractions of pelvic floor muscles were measured. The abdominal and gluteus muscles were evaluated concomitantly to the assessment in an attempt to isolate the pelvic floor muscle contractions. Main Outcome Measures: To evaluate the test-retest reliability with the intraclass correlation coefficient and the SEM. Results: Intraclass correlation of pelvic floor muscle force values ranged from good to excellent. The SEM values for anteroposterior strength were 1.96 N and 1.86 N for left and right, respectively. Conclusions: Test-retest values demonstrated that the equipment we assessed to measure the anteroposterior and left-right force generated reliable pelvic floor muscle strength measurements. PM R 2011;3:21-2631212

    Comportamento da impedância elétrica dos tecidos biológicos durante estimulação elétrica transcutânea Electrical impedance behavior of biological tissues during transcutaneous electrical stimulation

    No full text
    OBJETIVO: Analisar a impedância elétrica dos tecidos biológicos durante estimulação elétrica em diferentes segmentos, faces e freqüências da corrente, aumentando-se a distância intereletrodos. MÉTODO: 20 voluntárias, idade média 23 ± 2,25anos e índice de massa corporal 20,65 ± 1,44kg/m², permaneceram em decúbito, sendo um eletrodo posicionado proximalmente às interlinhas articulares do punho e tornozelo, anterior e posteriormente, ou à espinha ilíaca póstero-superior, e outro eletrodo distanciado seqüencialmente em 10, 20, 30 e 40cm. Foram aplicadas duas correntes (100us e 10mA), uma de 100Hz (BF) e outra de 2000Hz modulada em 100% da amplitude para 100Hz (MF), com intervalo mínimo de 7 dias. A impedância foi calculada, indiretamente, pela Lei de Ohm, a partir da intensidade aplicada e da tensão elétrica captada em sistema composto por osciloscópio digital (TDS 210, Tektronix®) e gerador de corrente constante (Dualpex 961, Quark®). Para análise estatística, aplicou-se Anova-F e Kruskal-Wallis com post hoc (SNK), teste de Friedman e coeficiente de correlação de Spearman, considerando p< 0,05. RESULTADOS: Apesar de o comportamento da impedância elétrica com o aumento da distância intereletrodos ser similar para ambas as correntes, houve uma redução da impedância sob estimulação com MF. Nos membros, aproximadamente 50% da variabilidade da impedância é explicada pelo afastamento dos eletrodos, relação essa não observada na face posterior do tronco. Independente do tipo de corrente, o tronco apresentou os menores valores de impedância elétrica, seguido pelo membro inferior. CONCLUSÕES: A impedância elétrica dos tecidos sofre influência da freqüência da corrente e da localização e distância intereletrodos, apresentando padrão não uniforme nos diferentes segmentos.<br>OBJECTIVE: To analyze the electrical impedance of biological tissues during electrical stimulation in relation to different segments, surfaces and current frequencies, with increasing distance between electrodes. METHOD: 20 female volunteers of mean age 23 ± 2.25 years and mean body mass index 20.65 ± 1.44 kg/m² were positioned in decubitus with one electrode placed proximally to the wrist and ankle joint lines, anteriorly and posteriorly, or on the posterosuperior iliac spine, and the other electrode was placed at distance of 10, 20, 30 and 40 cm, sequentially. Two currents (100 us and 10 mA) were applied: one at 100 Hz (LF) and the other at 2000 Hz modulated at 100% of the amplitude for 100 Hz (MF), with a minimum interval of seven days. The impedance was calculated indirectly using Ohm's Law, from the applied intensity and the electrical voltage picked up by a system consisting of a digital oscilloscope (TDS 210, Tektronix®) and a direct current generator (Dualpex 961, Quark®). For statistical analysis, Anova-F and Kruskal-Wallis were applied, with post hoc (SNK), Friedman test and Spearman correlation coefficient, taking p< 0.05. RESULTS: Despite similar electrical impedance behavior with increasing distance between electrodes for the two currents, there was a reduction in impedance under MF stimulation. In the limbs, approximately 50% of the impedance variance was explained by the increase in electrode separation, although this relationship was not observed on the posterior surface of the trunk. Independent of the current type, the trunk presented the lowest electrical impedance, followed by the lower limbs. CONCLUSION: The electrical impedance of the tissues was influenced by current frequency and the positioning and distance between electrodes, thus presenting a non-uniform pattern in the different segments
    corecore