20 research outputs found

    Branched Chain Fatty Acids Reduce the Incidence of Necrotizing Enterocolitis and Alter Gastrointestinal Microbial Ecology in a Neonatal Rat Model

    Get PDF
    Branched chain fatty acids (BCFA) are found in the normal term human newborn's gut, deposited as major components of vernix caseosa ingested during late fetal life. We tested the hypothesis that premature infants' lack of exposure to gastrointestinal (GI) BCFA is associated with their microbiota and risk for necrotizing enterocolitis (NEC) using a neonatal rat model.Pups were collected one day before scheduled birth. The pups were exposed to asphyxia and cold stress to induce NEC. Pups were assigned to one of three experimental treatments. DF (dam-fed); Control, hand-fed rat milk substitute; BCFA, hand-fed rat milk substitute with 20%w/w BCFA. Total fat was equivalent (11%wt) for both the Control and BCFA groups. Cecal microbiota were characterized by 16S rRNA gene pyrosequencing, and intestinal injury, ileal cytokine and mucin gene expression, interleukin-10 (IL-10) peptide immunohistochemistry, and BCFA uptake in ileum phospholipids, serum and liver were assessed.NEC incidence was reduced by over 50% in the BCFA group compared to the Control group as assessed in ileal tissue; microbiota differed among all groups. BCFA-fed pups harbored greater levels of BCFA-associated Bacillus subtilis and Pseudomonas aeruginosa compared to Controls. Bacillus subtilis levels were five-fold greater in healthy pups compared to pups with NEC. BCFA were selectively incorporated into ileal phospholipids, serum and liver tissue. IL-10 expression increased three-fold in the BCFA group versus Controls and no other inflammatory or mucosal mRNA markers changed.At constant dietary fat level, BCFA reduce NEC incidence and alter microbiota composition. BCFA are also incorporated into pup ileum where they are associated with enhanced IL-10 and may exert other specific effects

    Enzyme promiscuity drives branched-chain fatty acid synthesis in adipose tissues.

    No full text
    Fatty acid synthase (FASN) predominantly generates straight-chain fatty acids using acetyl-CoA as the initiating substrate. However, monomethyl branched-chain fatty acids (mmBCFAs) are also present in mammals but are thought to be primarily diet derived. Here we demonstrate that mmBCFAs are de novo synthesized via mitochondrial BCAA catabolism, exported to the cytosol by adipose-specific expression of carnitine acetyltransferase (CrAT), and elongated by FASN. Brown fat exhibits the highest BCAA catabolic and mmBCFA synthesis fluxes, whereas these lipids are largely absent from liver and brain. mmBCFA synthesis is also sustained in the absence of microbiota. We identify hypoxia as a potent suppressor of BCAA catabolism that decreases mmBCFA synthesis in obese adipose tissue, such that mmBCFAs are significantly decreased in obese animals. These results identify adipose tissue mmBCFA synthesis as a novel link between BCAA metabolism and lipogenesis, highlighting roles for CrAT and FASN promiscuity influencing acyl-chain diversity in the lipidome

    Ozone-induced dissociation of conjugated lipids reveals significant reaction rate enhancements and characteristic odd-electron product ions

    Get PDF
    Ozone-induced dissociation (OzID) is an alternative ion activation method that relies on the gas phase ion-molecule reaction between a mass-selected target ion and ozone in an ion trap mass spectrometer. Herein, we evaluated the performance of OzID for both the structural elucidation and selective detection of conjugated carbon-carbon double bond motifs within lipids. The relative reactivity trends for \[M + X](+) ions (where X = Li, Na, K) formed via electrospray ionization (ESI) of conjugated versus nonconjugated fatty acid methyl esters (FAMEs) were examined using two different OzID-enabled linear ion-trap mass spectrometers. Compared with nonconjugated analogues, FAMEs derived from conjugated linoleic acids were found to react up to 200 times faster and to yield characteristic radical cations. The significantly enhanced reactivity of conjugated isomers means that OzID product ions can be observed without invoking a reaction delay in the experimental sequence (i.e., trapping of ions in the presence of ozone is not required). This possibility has been exploited to undertake neutral-loss scans on a triple quadrupole mass spectrometer targeting characteristic OzID transitions. Such analyses reveal the presence of conjugated double bonds in lipids extracted from selected foodstuffs. Finally, by benchmarking of the absolute ozone concentration inside the ion trap, second order rate constants for the gas phase reactions between unsaturated organic ions and ozone were obtained. These results demonstrate a significant influence of the adducting metal on reaction rate constants in the fashion Li > Na > K

    Bifidobacterium longum subsp. infantis in experimental necrotizing enterocolitis: alterations in inflammation, innate immune response, and the microbiota

    No full text
    BACKGROUND: Probiotics decrease the risk of necrotizing enterocolits (NEC). We sought to determine the impact of Bifidobacterium longum subsp. infantis (B. infantis) in the established rat model of NEC. METHODS: Rat pups delivered one day prior to term gestation were assigned to one of three groups: dam-fed (DF), formula-fed (FF), or fed with formula supplemented with 5 × 10(6) CFU B. infantis per day (FF+Binf). Experimental pups were exposed to hypoxia and cold stress. Ileal tissue was examined for pathology and expression of inflammatory mediators, antimicrobial peptides, and goblet-cell products. Ceca were assessed for bacterial composition by analysis of 16S rRNA sequence. RESULTS: Administration of B. infantis significantly reduced the incidence of NEC, decreased expression of Il6, Cxcl1, Tnfa, Il23, and iNOS, and decreased expression of the antimicrobial peptides Reg3b and Reg3g. There was significant microbial heterogeneity both within groups and between experiments. The cecal microbiota was not significantly different between the FF and FF+Binf groups. Bifidobacteria were not detected in the cecum in significant numbers. CONCLUSIONS: In the rat model, the inflammation associated with NEC was attenuated by administration of probiotic B. infantis. Dysbiosis was highly variable precluding determination of the precise role of the microbiota in experimental NEC
    corecore