1,261 research outputs found

    Supercapacitor Degradation: Understanding Mechanisms of Cycling-Induced Deterioration and Failure of a Pseudocapacitor

    Get PDF
    Owing to a reputation for long lifetimes and excellent cycle stability, degradation in supercapacitors has largely been overlooked. In this work, we demonstrate that significant degradation in some commercial supercapacitors can in fact occur early in their life, leading to a rapid loss in capacitance, especially when utilized in full voltage range, high charge-discharge frequency applications. By using a commercial 300 F lithium-ion pseudocapacitor rated for 100,000 charge/discharge cycles as an example system, it is shown that a ∼96 % loss in capacitance over the first ∼2000 cycles is caused by significant structural and chemical change in the cathode active material (LiMn2O4, LMO). Multi-scale in-situ and ex-situ characterization, using a combination of X-ray computed tomography, Raman spectroscopy and X-ray photoelectron spectroscopy, shows that while minimal material loss (∼5.5 %), attributed to the dissolution of Mn2+, is observed, the primary mode of degradation is due to manganese charge disproportionation (Mn3+β†’Mn4++Mn2+) and its physical consequences (i. e. microstrain formation, particle fragmentation, loss of conductivity etc.). In contrast to prior understanding of LMO material degradation in battery systems, negligible contributions from cubic-to-tetragonal phase transitions are observed. Hence, as supercapacitors are becoming more widely utilized in real-world applications, this work demonstrates that it is vital to understand the mechanisms by which this family of devices change during their lifetimes, not just for lithium-ion pseudocapacitors, but for a wide range of commercial chemistries

    The method of educational assessment affects children’s neural processing and performance: behavioural and fMRI Evidence.

    Get PDF
    Standardised educational assessments are now widespread, yet their development has given comparatively more consideration to what to assess than how to optimally assess students’ competencies. Existing evidence from behavioural studies with children and neuroscience studies with adults suggest that the method of assessment may affect neural processing and performance, but current evidence remains limited. To investigate the impact of assessment methods on neural processing and performance in young children, we used functional magnetic resonance imaging to identify and quantify the neural correlates during performance across a range of current approaches to standardised spelling assessment. Results indicated that children’s test performance declined as the cognitive load of assessment method increased. Activation of neural nodes associated with working memory further suggests that this performance decline may be a consequence of a higher cognitive load, rather than the complexity of the content. These findings provide insights into principles of assessment (re)design, to ensure assessment results are an accurate reflection of students’ true levels of competency

    Formation of Super-Earths

    Full text link
    Super-Earths are the most abundant planets known to date and are characterized by having sizes between that of Earth and Neptune, typical orbital periods of less than 100 days and gaseous envelopes that are often massive enough to significantly contribute to the planet's overall radius. Furthermore, super-Earths regularly appear in tightly-packed multiple-planet systems, but resonant configurations in such systems are rare. This chapters summarizes current super-Earth formation theories. It starts from the formation of rocky cores and subsequent accretion of gaseous envelopes. We follow the thermal evolution of newly formed super-Earths and discuss their atmospheric mass loss due to disk dispersal, photoevaporation, core-cooling and collisions. We conclude with a comparison of observations and theoretical predictions, highlighting that even super-Earths that appear as barren rocky cores today likely formed with primordial hydrogen and helium envelopes and discuss some paths forward for the future.Comment: Invited review accepted for publication in the 'Handbook of Exoplanets,' Planet Formation section, Springer Reference Works, Juan Antonio Belmonte and Hans Deeg, Ed

    In vivo imaging and quantitative analysis of leukocyte directional migration and polarization in inflamed tissue

    Get PDF
    Directional migration of transmigrated leukocytes to the site of injury is a central event in the inflammatory response. Here, we present an in vivo chemotaxis assay enabling the visualization and quantitative analysis of subtype-specific directional motility and polarization of leukocytes in their natural 3D microenvironment. Our technique comprises the combination of i) semi-automated in situ microinjection of chemoattractants or bacteria as local chemotactic stimulus, ii) in vivo near-infrared reflected-light oblique transillumination (RLOT) microscopy for the visualization of leukocyte motility and morphology, and iii) in vivo fluorescence microscopy for the visualization of different leukocyte subpopulations or fluorescence-labeled bacteria. Leukocyte motility parameters are quantified off-line in digitized video sequences using computer-assisted single cell tracking. Here, we show that perivenular microinjection of chemoattractants [macrophage inflammatory protein-1alpha (MIP-1alpha/Ccl3), platelet-activating factor (PAF)] or E. coli into the murine cremaster muscle induces target-oriented intravascular adhesion and transmigration as well as polarization and directional interstitial migration of leukocytes towards the locally administered stimuli. Moreover, we describe a crucial role of Rho kinase for the regulation of directional motility and polarization of transmigrated leukocytes in vivo. Finally, combining in vivo RLOT and fluorescence microscopy in Cx3CR1(gfp/gfp) mice (mice exhibiting green fluorescent protein-labeled monocytes), we are able to demonstrate differences in the migratory behavior of monocytes and neutrophils.Taken together, we propose a novel approach for investigating the mechanisms and spatiotemporal dynamics of subtype-specific motility and polarization of leukocytes during their directional interstitial migration in vivo

    Rotation of planet-harbouring stars

    Full text link
    The rotation rate of a star has important implications for the detectability, characterisation and stability of any planets that may be orbiting it. This chapter gives a brief overview of stellar rotation before describing the methods used to measure the rotation periods of planet host stars, the factors affecting the evolution of a star's rotation rate, stellar age estimates based on rotation, and an overview of the observed trends in the rotation properties of stars with planets.Comment: 16 pages, 4 figures: Invited review to appear in 'Handbook of Exoplanets', Springer Reference Works, edited by Hans J. Deeg and Juan Antonio Belmont

    Follow-up of phase I trial of adalimumab and rosiglitazone in FSGS: III. Report of the FONT study group

    Get PDF
    Abstract Background Patients with resistant primary focal segmental glomerulosclerosis (FSGS) are at high risk of progression to chronic kidney disease stage V. Antifibrotic agents may slow or halt this process. We present outcomes of follow-up after a Phase I trial of adalimumab and rosiglitazone, antifibrotic drugs tested in the Novel Therapies in Resistant FSGS (FONT) study. Methods 21 patients -- 12 males and 9 females, age 16.0 Β± 7.5 yr, and estimated GFR (GFRe) 121 Β± 56 mL/min/1.73 m2 -- received adalimumab (n = 10), 24 mg/m2 every 14 days or rosiglitazone (n = 11), 3 mg/m2 per day for 16 weeks. The change in GFRe per month prior to entry and after completion of the Phase I trial was compared. Results 19 patients completed the 16-week FONT treatment phase. The observation period pre-FONT was 18.3 Β± 10.2 months and 16.1 Β± 5.7 months after the study. A similar percentage of patients, 71% and 56%, in the rosiglitazone and adalimumab cohorts, respectively, had stabilization in GFRe, defined as a reduced negative slope of the line plotting GFRe versus time without requiring renal replacement therapy after completion of the FONT treatment period (P = 0.63). Conclusion Nearly 50% of patients with resistant FSGS who receive novel antifibrotic agents may have a legacy effect with delayed deterioration in kidney function after completion of therapy. Based on this proof-of-concept preliminary study, we recommend long-term follow-up of patients enrolled in clinical trials to ascertain a more comprehensive assessment of the efficacy of experimental treatments

    Simultaneously Hermaphroditic Shrimp Use Lipophilic Cuticular Hydrocarbons as Contact Sex Pheromones

    Get PDF
    Successful mating is essentially a consequence of making the right choices at the correct time. Animals use specific strategies to gain information about a potential mate, which is then applied to decision-making processes. Amongst the many informative signals, odor cues such as sex pheromones play important ecological roles in coordinating mating behavior, enabling mate and kin recognition, qualifying mate choice, and preventing gene exchange among individuals from different populations and species. Despite overwhelming behavioral evidence, the chemical identity of most cues used in aquatic organisms remains unknown and their impact and omnipresence have not been fully recognized. In many crustaceans, including lobsters and shrimps, reproduction happens through a cascade of events ranging from initial attraction to formation of a mating pair eventually leading to mating. We examined the hypothesis that contact pheromones on the female body surface of the hermaphroditic shrimp Lysmata boggessi are of lipophilic nature, and resemble insect cuticular hydrocarbon contact cues. Via chemical analyses and behavioural assays, we show that newly molted euhermaphrodite-phase shrimp contain a bouquet of odor compounds. Of these, (Z)-9-octadecenamide is the key odor with hexadecanamide and methyl linoleate enhancing the bioactivity of the pheromone blend. Our results show that in aquatic systems lipophilic, cuticular hydrocarbon contact sex pheromones exist; this raises questions on how hydrocarbon contact signals evolved and how widespread these are in the marine environment

    Passive tobacco exposure may impair symptomatic improvement in patients with chronic angina undergoing enhanced external counterpulsation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The adverse effects of tobacco abuse on cardiovascular outcomes are well-known. However, the impact of passive smoke exposure on angina status and therapeutic response is less well-established. We examined the impact of second-hand smoke (SHS) exposure on symptomatic improvement in patients with chronic ischemic coronary disease undergoing enhanced external counterpulsation (EECP).</p> <p>Methods</p> <p>This observational study included 1,026 non-smokers (108 exposed and 918 not-exposed to SHS) from the Second International EECP Patient Registry. We also assessed angina response in 363 current smokers. Patient demographics, symptomatic improvement and quality of life assessment were determined by self-report prior and after EECP treatment.</p> <p>Results</p> <p>Non-smoking SHS subjects had a lower prevalence of prior revascularization (85% vs 90%), and had an increased prevalence of stroke (13% vs 7%) and prior smoking (72% vs 61%; all p < 0.05) compared to non-smokers without SHS exposure. Despite comparable degrees of coronary disease, baseline angina class, medical regimens and side effects during EECP, fewer SHS non-smokers completed a full 35-hour treatment course (77% vs 85%, p = 0.020) compared to non-smokers without SHS. Compared to non-smokers without SHS, non-smoking SHS subjects had less angina relief after EECP (angina class decreased β‰₯ 1 class: 68% vs 79%; p = 0.0082), both higher than that achieved in current smokers (66%). By multivariable logistic regression, SHS exposure was an independent predictor of failure to symptomatic improvement after EECP among non-smokers (OR 1.81, 95% confidence intervals 1.16–2.83).</p> <p>Conclusion</p> <p>Non-smokers with SHS exposure had an attenuated improvement in anginal symptoms compared to those without SHS following EECP.</p

    Finding Your Mate at a Cocktail Party: Frequency Separation Promotes Auditory Stream Segregation of Concurrent Voices in Multi-Species Frog Choruses

    Get PDF
    Vocal communication in crowded social environments is a difficult problem for both humans and nonhuman animals. Yet many important social behaviors require listeners to detect, recognize, and discriminate among signals in a complex acoustic milieu comprising the overlapping signals of multiple individuals, often of multiple species. Humans exploit a relatively small number of acoustic cues to segregate overlapping voices (as well as other mixtures of concurrent sounds, like polyphonic music). By comparison, we know little about how nonhuman animals are adapted to solve similar communication problems. One important cue enabling source segregation in human speech communication is that of frequency separation between concurrent voices: differences in frequency promote perceptual segregation of overlapping voices into separate β€œauditory streams” that can be followed through time. In this study, we show that frequency separation (Ξ”F) also enables frogs to segregate concurrent vocalizations, such as those routinely encountered in mixed-species breeding choruses. We presented female gray treefrogs (Hyla chrysoscelis) with a pulsed target signal (simulating an attractive conspecific call) in the presence of a continuous stream of distractor pulses (simulating an overlapping, unattractive heterospecific call). When the Ξ”F between target and distractor was small (e.g., ≀3 semitones), females exhibited low levels of responsiveness, indicating a failure to recognize the target as an attractive signal when the distractor had a similar frequency. Subjects became increasingly more responsive to the target, as indicated by shorter latencies for phonotaxis, as the Ξ”F between target and distractor increased (e.g., Ξ”Fβ€Š=β€Š6–12 semitones). These results support the conclusion that gray treefrogs, like humans, can exploit frequency separation as a perceptual cue to segregate concurrent voices in noisy social environments. The ability of these frogs to segregate concurrent voices based on frequency separation may involve ancient hearing mechanisms for source segregation shared with humans and other vertebrates
    • …
    corecore