117 research outputs found

    A Rationale for Schistosomiasis Control in Elementary Schools of the Rainforest Zone of Pernambuco, Brazil

    Get PDF
    In 2001, a World Health Assembly resolution urged member states to ensure treatment against schistosomiasis and soil-transmitted helminthiasis in endemic areas with the goal of attaining a minimum target of at least 75% of all school-aged children by 2010. In the highly endemic Rainforest Zone of Pernambuco (ZMP), northeast Brazil, the Schistosomiasis Control Program has registered a cumulative coverage of only 20% of the population at risk, which jeopardizes the accomplishment of the minimum target for that area. Demographic and parasitological data from a representative municipality of the ZMP provide evidence that the current, community-based approach to control can be complemented with school-based actions. In the most troubled municipalities, individual diagnosis and treatment could be focused on school-aged children rather than whole populations without compromising the principles of the primary health care system. Local health and education teams should be encouraged to include school-based interventions to scale up coverage and achieve a rapid impact on infection

    Separate loci underlie resistance to root infection and leaf scorch during soybean sudden death syndrome

    Get PDF
    Soybean [Glycine max (L.) Merr.] cultivars show differences in their resistance to both the leaf scorch and root rot of sudden death syndrome (SDS). The syndrome is caused by root colonization by Fusarium virguliforme (ex. F. solani f. sp. glycines). Root susceptibility combined with reduced leaf scorch resistance has been associated with resistance to Heterodera glycines HG Type 1.3.6.7 (race 14) of the soybean cyst nematode (SCN). In contrast, the rhg1 locus underlying resistance to Hg Type 0 was found clustered with three loci for resistance to SDS leaf scorch and one for root infection. The aims of this study were to compare the inheritance of resistance to leaf scorch and root infection in a population that segregated for resistance to SCN and to identify the underlying quantitative trait loci (QTL). “Hartwig”, a cultivar partially resistant to SDS leaf scorch, F. virguliforme root infection and SCN HG Type 1.3.6.7 was crossed with the partially susceptible cultivar “Flyer”. Ninety-two F5-derived recombinant inbred lines and 144 markers were used for map development. Four QTL found in earlier studies were confirmed. One contributed resistance to leaf scorch on linkage group (LG) C2 (Satt277; P = 0.004, R 2 = 15%). Two on LG G underlay root infection at R8 (Satt038; P = 0.0001 R 2 = 28.1%; Satt115; P = 0.003, R 2 = 12.9%). The marker Satt038 was linked to rhg1 underlying resistance to SCN Hg Type 0. The fourth QTL was on LG D2 underlying resistance to root infection at R6 (Satt574; P = 0.001, R 2 = 10%). That QTL was in an interval previously associated with resistance to both SDS leaf scorch and SCN Hg Type 1.3.6.7. The QTL showed repulsion linkage with resistance to SCN that may explain the relative susceptibility to SDS of some SCN resistant cultivars. One additional QTL was discovered on LG G underlying resistance to SDS leaf scorch measured by disease index (Satt130; P = 0.003, R 2 = 13%). The loci and markers will provide tagged alleles with which to improve the breeding of cultivars combining resistances to SDS leaf scorch, root infection and SCN HG Type 1.3.6.7
    corecore