196 research outputs found

    Cooperative coupling of ultracold atoms and surface plasmons

    Full text link
    Cooperative coupling between optical emitters and light fields is one of the outstanding goals in quantum technology. It is both fundamentally interesting for the extraordinary radiation properties of the participating emitters and has many potential applications in photonics. While this goal has been achieved using high-finesse optical cavities, cavity-free approaches that are broadband and easy to build have attracted much attention recently. Here we demonstrate cooperative coupling of ultracold atoms with surface plasmons propagating on a plane gold surface. While the atoms are moving towards the surface they are excited by an external laser pulse. Excited surface plasmons are detected via leakage radiation into the substrate of the gold layer. A maximum Purcell factor of ηP=4.9\eta_\mathrm{P}=4.9 is reached at an optimum distance of z=250 nmz=250~\mathrm{nm} from the surface. The coupling leads to the observation of a Fano-like resonance in the spectrum.Comment: 9 pages, 4 figure

    Behavior of a Metabolic Cycling Population at the Single Cell Level as Visualized by Fluorescent Gene Expression Reporters

    Get PDF
    BACKGROUND: During continuous growth in specific chemostat cultures, budding yeast undergo robust oscillations in oxygen consumption that are accompanied by highly periodic changes in transcript abundance of a majority of genes, in a phenomenon called the Yeast Metabolic Cycle (YMC). This study uses fluorescent reporters of genes specific to different YMC phases in order to visualize this phenomenon and understand the temporal regulation of gene expression at the level of individual cells within the cycling population. METHODOLOGY: Fluorescent gene expression reporters for different phases of the YMC were constructed and stably integrated into the yeast genome. Subsequently, these reporter-expressing yeast were used to visualize YMC dynamics at the individual cell level in cultures grown in a chemostat or in a microfluidics platform under varying glucose concentrations, using fluorescence microscopy and quantitative Western blots. CONCLUSIONS: The behavior of single cells within a metabolic cycling population was visualized using phase-specific fluorescent reporters. The reporters largely recapitulated genome-specified mRNA expression profiles. A significant fraction of the cell population appeared to exhibit basal expression of the reporters, supporting the hypothesis that there are at least two distinct subpopulations of cells within the cycling population. Although approximately half of the cycling population initiated cell division in each permissive window of the YMC, metabolic synchrony of the population was maintained. Using a microfluidics platform we observed that low glucose concentrations appear to be necessary for metabolic cycling. Lastly, we propose that there is a temporal window in the oxidative growth phase of the YMC where the cycling population segregates into at least two subpopulations, one which will enter the cell cycle and one which does not

    Non-Linear Neuronal Responses as an Emergent Property of Afferent Networks: A Case Study of the Locust Lobula Giant Movement Detector

    Get PDF
    In principle it appears advantageous for single neurons to perform non-linear operations. Indeed it has been reported that some neurons show signatures of such operations in their electrophysiological response. A particular case in point is the Lobula Giant Movement Detector (LGMD) neuron of the locust, which is reported to locally perform a functional multiplication. Given the wide ramifications of this suggestion with respect to our understanding of neuronal computations, it is essential that this interpretation of the LGMD as a local multiplication unit is thoroughly tested. Here we evaluate an alternative model that tests the hypothesis that the non-linear responses of the LGMD neuron emerge from the interactions of many neurons in the opto-motor processing structure of the locust. We show, by exposing our model to standard LGMD stimulation protocols, that the properties of the LGMD that were seen as a hallmark of local non-linear operations can be explained as emerging from the dynamics of the pre-synaptic network. Moreover, we demonstrate that these properties strongly depend on the details of the synaptic projections from the medulla to the LGMD. From these observations we deduce a number of testable predictions. To assess the real-time properties of our model we applied it to a high-speed robot. These robot results show that our model of the locust opto-motor system is able to reliably stabilize the movement trajectory of the robot and can robustly support collision avoidance. In addition, these behavioural experiments suggest that the emergent non-linear responses of the LGMD neuron enhance the system's collision detection acuity. We show how all reported properties of this neuron are consistently reproduced by this alternative model, and how they emerge from the overall opto-motor processing structure of the locust. Hence, our results propose an alternative view on neuronal computation that emphasizes the network properties as opposed to the local transformations that can be performed by single neurons

    Accumulation of Endogenous LITAF in Aggresomes

    Get PDF
    LITAF is a 161 amino acid cellular protein which includes a proline rich N-terminus and a conserved C-terminal domain known as the simple-like domain. Mutations in LITAF have been identified in Charcot-Marie tooth disease, a disease characterized by protein aggregates. Cells transfected with cellular LITAF reveal that LITAF is localized to late endosomes/lysosomes. Here we investigated the intracellular localization of endogenous LITAF. We demonstrated that endogenous LITAF accumulates at a discrete cytoplasmic site in BGMK cells that we identify as the aggresome. To determine the domain within LITAF that is responsible for the localization of LITAF to aggresomes, we created a construct that contained the C-terminal simple-like domain of LITAF and found that this construct also localizes to aggresomes. These data suggest the simple-like domain is responsible for targeting endogenous LITAF to the aggresome

    Mapping the encounter state of a transient protein complex by PRE NMR spectroscopy

    Get PDF
    Many biomolecular interactions proceed via a short-lived encounter state, consisting of multiple, lowly-populated species invisible to most experimental techniques. Recent development of paramagnetic relaxation enhancement (PRE) nuclear magnetic resonance (NMR) spectroscopy has allowed to directly visualize such transient intermediates in a number of protein-protein and protein-DNA complexes. Here we present an analysis of the recently published PRE NMR data for a protein complex of yeast cytochrome c (Cc) and cytochrome c peroxidase (CcP). First, we describe a simple, general method to map out the spatial and temporal distributions of binding geometries constituting the Cc-CcP encounter state. We show that the spatiotemporal mapping provides a reliable estimate of the experimental coverage and, at higher coverage levels, allows to delineate the conformational space sampled by the minor species. To further refine the encounter state, we performed PRE-based ensemble simulations. The generated solutions reproduce well the experimental data and lie within the allowed regions of the encounter maps, confirming the validity of the mapping approach. The refined encounter ensembles are distributed predominantly in a region encompassing the dominant form of the complex, providing experimental proof for the results of classical theoretical simulations

    Muscle Oxygen Changes following Sprint Interval Cycling Training in Elite Field Hockey Players

    Get PDF
    This study examined the effects of Sprint Interval Cycling (SIT) on muscle oxygenation kinetics and performance during the 30-15 intermittent fitness test (IFT). Twenty-five women hockey players of Olympic standard were randomly selected into an experimental group (EXP) and a control group (CON). The EXP group performed six additional SIT sessions over six weeks in addition to their normal training program. To explore the potential training-induced change, EXP subjects additionally completed 5 x 30s maximal intensity cycle testing before and after training. During these tests near-infrared spectroscopy (NIRS) measured parameters; oxyhaemoglobin + oxymyoglobin (HbO2+ MbO2), tissue deoxyhaemoglobin + deoxymyoglobin (HHb+HMb), total tissue haemoglobin (tHb) and tissue oxygenation (TSI %) were taken. In the EXP group (5.34±0.14 to 5.50±0.14m.s-1) but not the CON group (pre = 5.37± 0.27 to 5.39±0.30m.s-1) significant changes were seen in the 30-15IFTperformance. EXP group also displayed significant post-training increases during the sprint cycling: ΔTSI (-7.59±0.91 to -12.16±2.70%); ΔHHb+HMb (35.68±6.67 to 69.44 ±26.48μM.cm); and ΔHbO2+ MbO2 (-74.29±13.82 to -109.36±22.61μM.cm). No significant differences were seen in ΔtHb (-45.81±15.23 to -42.93±16.24). NIRS is able to detect positive peripheral muscle oxygenation changes when used during a SIT protocol which has been shown to be an effective training modality within elite athletes

    Intense Synaptic Activity Enhances Temporal Resolution in Spinal Motoneurons

    Get PDF
    In neurons, spike timing is determined by integration of synaptic potentials in delicate concert with intrinsic properties. Although the integration time is functionally crucial, it remains elusive during network activity. While mechanisms of rapid processing are well documented in sensory systems, agility in motor systems has received little attention. Here we analyze how intense synaptic activity affects integration time in spinal motoneurons during functional motor activity and report a 10-fold decrease. As a result, action potentials can only be predicted from the membrane potential within 10 ms of their occurrence and detected for less than 10 ms after their occurrence. Being shorter than the average inter-spike interval, the AHP has little effect on integration time and spike timing, which instead is entirely determined by fluctuations in membrane potential caused by the barrage of inhibitory and excitatory synaptic activity. By shortening the effective integration time, this intense synaptic input may serve to facilitate the generation of rapid changes in movements

    The HITRAN2020 molecular spectroscopic database

    Get PDF
    The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITRAN Application Programming Interface (HAPI). The functionality of both tools has been extended for the new edition

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore