44 research outputs found

    A multicentre, randomised controlled trial comparing the clinical effectiveness and cost-effectiveness of early nutritional support via the parenteral versus the enteral route in critically ill patients (CALORIES)

    Get PDF
    BACKGROUND: Malnutrition is a common problem in critically ill patients in UK NHS critical care units. Early nutritional support is therefore recommended to address deficiencies in nutritional state and related disorders in metabolism. However, evidence is conflicting regarding the optimum route (parenteral or enteral) of delivery. OBJECTIVES: To estimate the effect of early nutritional support via the parenteral route compared with the enteral route on mortality at 30 days and on incremental cost-effectiveness at 1 year. Secondary objectives were to compare the route of early nutritional support on duration of organ support; infectious and non-infectious complications; critical care unit and acute hospital length of stay; all-cause mortality at critical care unit and acute hospital discharge, at 90 days and 1 year; survival to 90 days and 1 year; nutritional and health-related quality of life, resource use and costs at 90 days and 1 year; and estimated lifetime incremental cost-effectiveness. DESIGN: A pragmatic, open, multicentre, parallel-group randomised controlled trial with an integrated economic evaluation. SETTING: Adult general critical care units in 33 NHS hospitals in England. PARTICIPANTS: 2400 eligible patients. INTERVENTIONS: Five days of early nutritional support delivered via the parenteral (n = 1200) and enteral (n = 1200) route. MAIN OUTCOME MEASURES: All-cause mortality at 30 days after randomisation and incremental net benefit (INB) (at £20,000 per quality-adjusted life-year) at 1 year. RESULTS: By 30 days, 393 of 1188 (33.1%) patients assigned to receive early nutritional support via the parenteral route and 409 of 1195 (34.2%) assigned to the enteral route had died [p = 0.57; absolute risk reduction 1.15%, 95% confidence interval (CI) -2.65 to 4.94; relative risk 0.97 (0.86 to 1.08)]. At 1 year, INB for the parenteral route compared with the enteral route was negative at -£1320 (95% CI -£3709 to £1069). The probability that early nutritional support via the parenteral route is more cost-effective - given the data - is < 20%. The proportion of patients in the parenteral group who experienced episodes of hypoglycaemia (p = 0.006) and of vomiting (p < 0.001) was significantly lower than in the enteral group. There were no significant differences in the 15 other secondary outcomes and no significant interactions with pre-specified subgroups. LIMITATIONS: Blinding of nutritional support was deemed to be impractical and, although the primary outcome was objective, some secondary outcomes, although defined and objectively assessed, may have been more vulnerable to observer bias. CONCLUSIONS: There was no significant difference in all-cause mortality at 30 days for early nutritional support via the parenteral route compared with the enteral route among adults admitted to critical care units in England. On average, costs were higher for the parenteral route, which, combined with similar survival and quality of life, resulted in negative INBs at 1 year. FUTURE WORK: Nutritional support is a complex combination of timing, dose, duration, delivery and type, all of which may affect outcomes and costs. Conflicting evidence remains regarding optimum provision to critically ill patients. There is a need to utilise rigorous consensus methods to establish future priorities for basic and clinical research in this area. TRIAL REGISTRATION: Current Controlled Trials ISRCTN17386141. FUNDING: This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 20, No. 28. See the NIHR Journals Library website for further project information

    Early, Goal-Directed Therapy for Septic Shock - A Patient-Level Meta-Analysis

    Get PDF
    BACKGROUND: After a single-center trial and observational studies suggesting that early, goal-directed therapy (EGDT) reduced mortality from septic shock, three multicenter trials (ProCESS, ARISE, and ProMISe) showed no benefit. This meta-analysis of individual patient data from the three recent trials was designed prospectively to improve statistical power and explore heterogeneity of treatment effect of EGDT. METHODS: We harmonized entry criteria, intervention protocols, outcomes, resource-use measures, and data collection across the trials and specified all analyses before unblinding. After completion of the trials, we pooled data, excluding the protocol-based standard-therapy group from the ProCESS trial, and resolved residual differences. The primary outcome was 90-day mortality. Secondary outcomes included 1-year survival, organ support, and hospitalization costs. We tested for treatment-by-subgroup interactions for 16 patient characteristics and 6 care-delivery characteristics. RESULTS: We studied 3723 patients at 138 hospitals in seven countries. Mortality at 90 days was similar for EGDT (462 of 1852 patients [24.9%]) and usual care (475 of 1871 patients [25.4%]); the adjusted odds ratio was 0.97 (95% confidence interval, 0.82 to 1.14; P=0.68). EGDT was associated with greater mean (±SD) use of intensive care (5.3±7.1 vs. 4.9±7.0 days, P=0.04) and cardiovascular support (1.9±3.7 vs. 1.6±2.9 days, P=0.01) than was usual care; other outcomes did not differ significantly, although average costs were higher with EGDT. Subgroup analyses showed no benefit from EGDT for patients with worse shock (higher serum lactate level, combined hypotension and hyperlactatemia, or higher predicted risk of death) or for hospitals with a lower propensity to use vasopressors or fluids during usual resuscitation. CONCLUSIONS: In this meta-analysis of individual patient data, EGDT did not result in better outcomes than usual care and was associated with higher hospitalization costs across a broad range of patient and hospital characteristics. (Funded by the National Institute of General Medical Sciences and others; PRISM ClinicalTrials.gov number, NCT02030158.

    Shedding Light on Vampires: The Phylogeny of Vampyrellid Amoebae Revisited

    Get PDF
    With the advent of molecular phylogenetic techniques the polyphyly of naked filose amoebae has been proven. They are interspersed in several supergroups of eukaryotes and most of them already found their place within the tree of life. Although the ‘vampire amoebae’ have attracted interest since the middle of the 19th century, the phylogenetic position and even the monophyly of this traditional group are still uncertain. In this study clonal co-cultures of eight algivorous vampyrellid amoebae and the respective food algae were established. Culture material was characterized morphologically and a molecular phylogeny was inferred using SSU rDNA sequence comparisons. We found that the limnetic, algivorous vampyrellid amoebae investigated in this study belong to a major clade within the Endomyxa Cavalier-Smith, 2002 (Cercozoa), grouping together with a few soil-dwelling taxa. They split into two robust clades, one containing species of the genus Vampyrella Cienkowski, 1865, the other containing the genus Leptophrys Hertwig & Lesser, 1874, together with terrestrial members. Supported by morphological data these clades are designated as the two families Vampyrellidae Zopf, 1885, and Leptophryidae fam. nov. Furthermore the order Vampyrellida West, 1901 was revised and now corresponds to the major vampyrellid clade within the Endomyxa, comprising the Vampyrellidae and Leptophryidae as well as several environmental sequences. In the light of the presented phylogenetic analyses morphological and ecological aspects, the feeding strategy and nutritional specialization within the vampyrellid amoebae are discussed

    Bacterial Cooperation Causes Systematic Errors in Pathogen Risk Assessment due to the Failure of the Independent Action Hypothesis

    Get PDF
    The Independent Action Hypothesis (IAH) states that pathogenic individuals (cells, spores, virus particles etc.) behave independently of each other, so that each has an independent probability of causing systemic infection or death. The IAH is not just of basic scientific interest; it forms the basis of our current estimates of infectious disease risk in humans. Despite the important role of the IAH in managing disease interventions for food and water-borne pathogens, experimental support for the IAH in bacterial pathogens is indirect at best. Moreover since the IAH was first proposed, cooperative behaviors have been discovered in a wide range of microorganisms, including many pathogens. A fundamental principle of cooperation is that the fitness of individuals is affected by the presence and behaviors of others, which is contrary to the assumption of independent action. In this paper, we test the IAH in Bacillus thuringiensis (B.t), a widely occurring insect pathogen that releases toxins that benefit others in the inoculum, infecting the diamondback moth, Plutella xylostella. By experimentally separating B.t. spores from their toxins, we demonstrate that the IAH fails because there is an interaction between toxin and spore effects on mortality, where the toxin effect is synergistic and cannot be accommodated by independence assumptions. Finally, we show that applying recommended IAH dose-response models to high dose data leads to systematic overestimation of mortality risks at low doses, due to the presence of synergistic pathogen interactions. Our results show that cooperative secretions can easily invalidate the IAH, and that such mechanistic details should be incorporated into pathogen risk analysis

    Topical antibiotics as a major contextual hazard toward bacteremia within selective digestive decontamination studies: a meta-analysis

    Get PDF
    corecore