20 research outputs found

    PTPRF is disrupted in a patient with syndromic amastia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The presence of mammary glands distinguishes mammals from other organisms. Despite significant advances in defining the signaling pathways responsible for mammary gland development in mice, our understanding of human mammary gland development remains rudimentary. Here, we identified a woman with bilateral amastia, ectodermal dysplasia and unilateral renal agenesis. She was found to have a chromosomal balanced translocation, 46,XX,t(1;20)(p34.1;q13.13). In addition to characterization of her clinical and cytogenetic features, we successfully identified the interrupted gene and studied its consequences.</p> <p>Methods</p> <p>Characterization of the breakpoints was performed by molecular cytogenetic techniques. The interrupted gene was further analyzed using quantitative real-time PCR and western blotting. Mutation analysis and high-density SNP array were carried out in order to find a pathogenic mutation. Allele segregations were obtained by haplotype analysis.</p> <p>Results</p> <p>We enabled to identify its breakpoint on chromosome 1 interrupting the <it>protein tyrosine receptor type F gene </it>(<it>PTPRF</it>). While the patient's mother and sisters also harbored the translocated chromosome, their non-translocated chromosomes 1 were different from that of the patient. Although a definite pathogenic mutation on the paternal allele could not be identified, <it>PTPRF</it>'s RNA and protein of the patient were significantly less than those of her unaffected family members.</p> <p>Conclusions</p> <p>Although <it>ptprf </it>has been shown to involve in murine mammary gland development, no evidence has incorporated <it>PTPRF </it>in human organ development. We, for the first time, demonstrated the possible association of <it>PTPRF </it>with syndromic amastia, making it a prime candidate to investigate for its spatial and temporal roles in human breast development.</p

    Paneth cell - rich regions separated by a cluster of Lgr5+ cells initiate crypt fission in the intestinal stem cell niche

    Get PDF
    The crypts of the intestinal epithelium house the stem cells that ensure the continual renewal of the epithelial cells that line the intestinal tract. Crypt number increases by a process called crypt fission, the division of a single crypt into two daughter crypts. Fission drives normal tissue growth and maintenance. Correspondingly, it becomes less frequent in adulthood. Importantly, fission is reactivated to drive adenoma growth. The mechanisms governing fission are poorly understood. However, only by knowing how normal fission operates can cancer-associated changes be elucidated. We studied normal fission in tissue in three dimensions using high-resolution imaging and used intestinal organoids to identify underlying mechanisms. We discovered that both the number and relative position of Paneth cells and Lgr5+ cells are important for fission. Furthermore, the higher stiffness and increased adhesion of Paneth cells are involved in determining the site of fission. Formation of a cluster of Lgr5+ cells between at least two Paneth-cell-rich domains establishes the site for the upward invagination that initiates fission

    Mammary Involution and Breast Cancer Risk: Transgenic Models and Clinical Studies

    Get PDF
    Postlactational involution is the process following weaning during which the mammary gland undergoes massive cell death and tissue remodeling as it returns to the pre-pregnant state. Lobular involution is the process by which the breast epithelial tissue is gradually lost with aging of the mammary gland. While postlactational involution and lobular involution are distinct processes, recent studies have indicated that both are related to breast cancer development. Experiments using a variety of rodent models, as well as observations in human populations, suggest that deregulation of postlactational involution may act to facilitate tumor formation. By contrast, new human studies show that completion of lobular involution protects against subsequent breast cancer incidence

    Molecular architecture and function of the hemidesmosome

    Get PDF

    Molecular architecture and function of the hemidesmosome

    Get PDF

    Phosphorylation of threonine 1736 in the C-terminal tail of integrin β4 contributes to hemidesmosome disassembly

    No full text
    T1736 is a novel phosphorylation site on the integrin β4 subunit that is phosphorylated downstream of protein kinase C and EGF receptor activation and is a substrate for protein kinase D1 in vitro and in cells. It contributes to the regulation of HD dynamics through modulating the association of β4 with plectin
    corecore