6,270 research outputs found

    Cancer therapy-induced PAFR ligand expression: any role for caspase activity?

    Get PDF
    No abstract available

    Packings of 3D stars: stability and structure

    Get PDF
    © 2016, Springer-Verlag Berlin Heidelberg.We describe a series of experiments involving the creation of cylindrical packings of star-shaped particles, and an exploration of the stability of these packings. The stars cover a broad range of arm sizes and frictional properties. We carried out three different kinds of experiments, all of which involve columns that are prepared by raining star particles one-by-one into hollow cylinders. As an additional part of the protocol, we sometimes vibrated the column before removing the confining cylinder. We rate stability in terms of r, the ratio of the mass of particles that fall off a pile when it collapsed, to the total particle mass. The first experiment involved the intrinsic stability of the column when the confining cylinder was removed. The second kind of experiment involved adding a uniform load to the top of the column, and then determining the collapse properties. A third experiment involved testing stability to tipping of the piles. We find a stability diagram relating the pile height, h, versus pile diameter, (Formula presented.) , where the stable and unstable regimes are separated by a boundary that is roughly a power-law in h versus (Formula presented.) with an exponent that is less than unity. Increasing vibration and friction, particularly the latter, both tend to stabilize piles, while increasing particle size can destabilize the system under certain conditions

    Automated Policy Combination for Secure Data Sharing in Cross-Organizational Collaborations

    Full text link
    © 2016 IEEE. During business collaborations, multiple participating organizations often need to share data for common interests. In such cases, it is necessary to combine local policies from different organizations into a global one in order to manage access to the shared data. However, local policies of organizations may be different or even conflicting, due to diverse rules and rule combining algorithms chosen. Few existing methods for policy combination are able to automatically combine multiple local policies into a global one. In this paper, we propose a bottom-up approach to address the issues of multiple policy combinations. The key idea is to first classify the rules based on attribute constraints in each policy, and then reduce the rules of the corresponding classes to one with the same attribute constraints. The reduced rules are then combined into a new global policy by choosing the appropriate rule combining algorithm in XACML. The latter ensures compliance with each of the local policies at syntax and semantic levels. To validate our approach, we develop a proof-of-concept implementation of the automated policy combination. Experimental results demonstrate that our approach is highly scalable and supports a number of attribute constraints in each local policy

    3D multi-agent models for protein release from PLGA spherical particles with complex inner morphologies

    Get PDF
    In order to better understand and predict the release of proteins from bioerodible micro- or nanospheres, it is important to know the influences of different initial factors on the release mechanisms. Often though it is difficult to assess what exactly is at the origin of a certain dissolution profile. We propose here a new class of fine-grained multi-agent models built to incorporate increasing complexity, permitting the exploration of the role of different parameters, especially that of the internal morphology of the spheres, in the exhibited release profile. This approach, based on Monte-Carlo (MC) and Cellular Automata (CA) techniques, has permitted the testing of various assumptions and hypotheses about several experimental systems of nanospheres encapsulating proteins. Results have confirmed that this modelling approach has increased the resolution over the complexity involved, opening promising perspectives for future developments, especially complementing in vitro experimentation

    In the Shadow of the Transiting Disk: Imaging epsilon Aurigae in Eclipse

    Full text link
    Eclipses of the single-line spectroscopic binary star, epsilon Aurigae, provide an opportunity to study the poorly-defined companion. We used the MIRC beam combiner on the CHARA array to create interferometric images during eclipse ingress. Our results demonstrate that the eclipsing body is a dark disk that is opaque and tilted, and therefore exclude alternative models for the system. These data constrain the geometry and masses of the components, providing evidence that the F-star is not a massive supergiant star.Comment: As submitted to Nature. Published in Nature April 8, 2010

    Morning Cortisol and Circulating Inflammatory Cytokine Levels: A Mendelian Randomisation Study.

    Get PDF
    Cortisol exerts a broad anti-inflammatory effect on the immune system. Inflammatory cytokines contribute to the molecular signalling pathways implicated in various autoimmune and inflammatory conditions. However, the mechanisms by which cortisol modulates such signalling pathways remain uncertain. Leveraging summary-level data from the CORtisol NETwork (CORNET, n = 25,314) and FINRISK (n = 8293) genome-wide association studies, we used two-sample Mendelian randomisation to investigate the causal effect of genetically proxied morning cortisol levels on 42 circulating cytokines. We found that increased genetically proxied morning cortisol levels were associated with reduced levels of IL-8 and increased levels of MIF. These results provide mechanistic insight into the immunomodulatory effects of endogenous cortisol and the therapeutic effects of exogenous corticosteroids. Clinically, our findings underline the therapeutic importance of steroids in inflammatory conditions where IL-8 and MIF play a central pathophysiological role in the onset and progression of disease

    Super-resolution far-field ghost imaging via compressive sampling

    Full text link
    Much more image details can be resolved by improving the system's imaging resolution and enhancing the resolution beyond the system's Rayleigh diffraction limit is generally called super-resolution. By combining the sparse prior property of images with the ghost imaging method, we demonstrated experimentally that super-resolution imaging can be nonlocally achieved in the far field even without looking at the object. Physical explanation of super-resolution ghost imaging via compressive sampling and its potential applications are also discussed.Comment: 4pages,4figure
    • 

    corecore