724 research outputs found

    Is Violent Radicalisation Associated with Poverty, Migration, Poor Self-Reported Health and Common Mental Disorders?

    Get PDF
    BACKGROUND: Doctors, lawyers and criminal justice agencies need methods to assess vulnerability to violent radicalization. In synergy, public health interventions aim to prevent the emergence of risk behaviours as well as prevent and treat new illness events. This paper describes a new method of assessing vulnerability to violent radicalization, and then investigates the role of previously reported causes, including poor self-reported health, anxiety and depression, adverse life events, poverty, and migration and socio-political factors. The aim is to identify foci for preventive intervention. METHODS: A cross-sectional survey of a representative population sample of men and women aged 18-45, of Muslim heritage and recruited by quota sampling by age, gender, working status, in two English cities. The main outcomes include self-reported health, symptoms of anxiety and depression (common mental disorders), and vulnerability to violent radicalization assessed by sympathies for violent protest and terrorist acts. RESULTS: 2.4% of people showed some sympathy for violent protest and terrorist acts. Sympathy was more likely to be articulated by the under 20s, those in full time education rather than employment, those born in the UK, those speaking English at home, and high earners (>£75,000 a year). People with poor self-reported health were less likely to show sympathies for violent protest and terrorism. Anxiety and depressive symptoms, adverse life events and socio-political attitudes showed no associations. CONCLUSIONS: Sympathies for violent protest and terrorism were uncommon among men and women, aged 18-45, of Muslim heritage living in two English cities. Youth, wealth, and being in education rather than employment were risk factors

    The Clostridium difficile Cell Wall Protein CwpV is Antigenically Variable between Strains, but Exhibits Conserved Aggregation-Promoting Function

    Get PDF
    Clostridium difficile is the main cause of antibiotic-associated diarrhea, leading to significant morbidity and mortality and putting considerable economic pressure on healthcare systems. Current knowledge of the molecular basis of pathogenesis is limited primarily to the activities and regulation of two major toxins. In contrast, little is known of mechanisms used in colonization of the enteric system. C. difficile expresses a proteinaceous array on its cell surface known as the S-layer, consisting primarily of the major S-layer protein SlpA and a family of SlpA homologues, the cell wall protein (CWP) family. CwpV is the largest member of this family and is expressed in a phase variable manner. Here we show CwpV promotes C. difficile aggregation, mediated by the C-terminal repetitive domain. This domain varies markedly between strains; five distinct repeat types were identified and were shown to be antigenically distinct. Other aspects of CwpV are, however, conserved. All CwpV types are expressed in a phase variable manner. Using targeted gene knock-out, we show that a single site-specific recombinase RecV is required for CwpV phase variation. CwpV is post-translationally cleaved at a conserved site leading to formation of a complex of cleavage products. The highly conserved N-terminus anchors the CwpV complex to the cell surface. Therefore CwpV function, regulation and processing are highly conserved across C. difficile strains, whilst the functional domain exists in at least five antigenically distinct forms. This hints at a complex evolutionary history for CwpV

    Voltage-Gated Ion Channel Dysfunction Precedes Cardiomyopathy Development in the Dystrophic Heart

    Get PDF
    Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is associated with severe cardiac complications including cardiomyopathy and cardiac arrhythmias. Recent research suggests that impaired voltage-gated ion channels in dystrophic cardiomyocytes accompany cardiac pathology. It is, however, unknown if the ion channel defects are primary effects of dystrophic gene mutations, or secondary effects of the developing cardiac pathology.To address this question, we first investigated sodium channel impairments in cardiomyocytes derived from dystrophic neonatal mice prior to cardiomyopahty development, by using the whole cell patch clamp technique. Besides the most common model for DMD, the dystrophin-deficient mdx mouse, we also used mice additionally carrying an utrophin mutation. In neonatal cardiomyocytes, dystrophin-deficiency generated a 25% reduction in sodium current density. In addition, extra utrophin-deficiency significantly altered sodium channel gating parameters. Moreover, also calcium channel inactivation was considerably reduced in dystrophic neonatal cardiomyocytes, suggesting that ion channel abnormalities are universal primary effects of dystrophic gene mutations. To assess developmental changes, we also studied sodium channel impairments in cardiomyocytes derived from dystrophic adult mice, and compared them with the respective abnormalities in dystrophic neonatal cells. Here, we found a much stronger sodium current reduction in adult cardiomyocytes. The described sodium channel impairments slowed the upstroke of the action potential in adult cardiomyocytes, and only in dystrophic adult mice, the QRS interval of the electrocardiogram was prolonged.Ion channel impairments precede pathology development in the dystrophic heart, and may thus be considered potential cardiomyopathy triggers

    ACE I/D Gene Polymorphism Can't Predict the Steroid Responsiveness in Asian Children with Idiopathic Nephrotic Syndrome: A Meta-Analysis

    Get PDF
    The results from the published studies on the association between angiotensin-converting enzyme (ACE) insertion/deletion (I/D) gene polymorphism and the treatment response to steroid in Asian children with idiopathic nephrotic syndrome (INS) is still conflicting. This meta-analysis was performed to evaluate the relation between ACE I/D gene polymorphism and treatment response to steroid in Asian children and to explore whether ACE D allele or DD genotype could become a predictive marker for steroid responsiveness. = 0.85; respectively), however, the result for the association of II genotype with SRNS risk was not stable.Our results indicate that D allele or DD homozygous can't become a significant genetic molecular marker to predict the treatment response to steroid in Asian children with INS

    Minimally invasive technologies for treatment of HTS and keloids : fractional laser

    Get PDF
    Hypertrophic fractional laser and keloid scars present a spectrum of disorders that are difficult to treat. Multiple treatments have been tried, to ameliorate the clinical sequelae of scarring, such as erythema, pruritus, functional limitation, reduced range of movement, dyschromias, hyper and/or hypopigmentation. Early international clinical recommendations on scar management first recognized the importance of laser therapy in this armamentarium [1]. Within the years that followed, laser technology and the understanding of how it modulates the underlying processes that leads to hypertrophic and keloid scarring have experienced a quantum leap [2] and are still evolving. Lasers also present a considerable financial commitent, and it is possible, in the authors’ experience, that limited early results partially stemmed from limited availability of multiple lasers with consequent attempts to overstretch the indications for what was available. This chapter presents a state-of-the-art insight into the use of fractional laser for the management of this complex problem. In particular, we focus on the management of complex scars such as those occurring post-burn injury and split-thickness skin grafting.peer-reviewe

    Gene Expression Profiles of the NCI-60 Human Tumor Cell Lines Define Molecular Interaction Networks Governing Cell Migration Processes

    Get PDF
    Although there is extensive information on gene expression and molecular interactions in various cell types, integrating those data in a functionally coherent manner remains challenging. This study explores the premise that genes whose expression at the mRNA level is correlated over diverse cell lines are likely to function together in a network of molecular interactions. We previously derived expression-correlated gene clusters from the database of the NCI-60 human tumor cell lines and associated each cluster with function categories of the Gene Ontology (GO) database. From a cluster rich in genes associated with GO categories related to cell migration, we extracted 15 genes that were highly cross-correlated; prominent among them were RRAS, AXL, ADAM9, FN14, and integrin-beta1. We then used those 15 genes as bait to identify other correlated genes in the NCI-60 database. A survey of current literature disclosed, not only that many of the expression-correlated genes engaged in molecular interactions related to migration, invasion, and metastasis, but that highly cross-correlated subsets of those genes engaged in specific cell migration processes. We assembled this information in molecular interaction maps (MIMs) that depict networks governing 3 cell migration processes: degradation of extracellular matrix, production of transient focal complexes at the leading edge of the cell, and retraction of the rear part of the cell. Also depicted are interactions controlling the release and effects of calcium ions, which may regulate migration in a spaciotemporal manner in the cell. The MIMs and associated text comprise a detailed and integrated summary of what is currently known or surmised about the role of the expression cross-correlated genes in molecular networks governing those processes

    A review of combined advanced oxidation technologies for the removal of organic pollutants from water

    Get PDF
    Water pollution through natural and anthropogenic activities has become a global problem causing short-and long-term impact on human and ecosystems. Substantial quantity of individual or mixtures of organic pollutants enter the surface water via point and nonpoint sources and thus affect the quality of freshwater. These pollutants are known to be toxic and difficult to remove by mere biological treatment. To date, most researches on the removal of organic pollutants from wastewater were based on the exploitation of individual treatment process. This single-treatment technology has inherent challenges and shortcomings with respect to efficiency and economics. Thus, application of two advanced treatment technologies characterized with high efficiency with respect to removal of primary and disinfection by-products in wastewater is desirable. This review article focuses on the application of integrated technologies such as electrohydraulic discharge with heterogeneous photocatalysts or sonophotocatalysis to remove target pollutants. The information gathered from more than 100 published articles, mostly laboratories studies, shows that process integration effectively remove and degrade recalcitrant toxic contaminants in wastewater better than single-technology processing. This review recommends an improvement on this technology (integrated electrohydraulic discharge with heterogeneous photocatalysts) viz-a-vis cost reduction in order to make it accessible and available in the rural and semi-urban settlement. Further recommendation includes development of an economic model to establish the cost implications of the combined technology. Proper monitoring, enforcement of the existing environmental regulations, and upgrading of current wastewater treatment plants with additional treatment steps such as photocatalysis and ozonation will greatly assist in the removal of environmental toxicants
    • …
    corecore