9,369 research outputs found
The century of the incomplete revolution: searching for general relativistic quantum field theory
In fundamental physics, this has been the century of quantum mechanics and
general relativity. It has also been the century of the long search for a
conceptual framework capable of embracing the astonishing features of the world
that have been revealed by these two ``first pieces of a conceptual
revolution''. I discuss the general requirements on the mathematics and some
specific developments towards the construction of such a framework. Examples of
covariant constructions of (simple) generally relativistic quantum field
theories have been obtained as topological quantum field theories, in
nonperturbative zero-dimensional string theory and its higher dimensional
generalizations, and as spin foam models. A canonical construction of a general
relativistic quantum field theory is provided by loop quantum gravity.
Remarkably, all these diverse approaches have turn out to be related,
suggesting an intriguing general picture of general relativistic quantum
physics.Comment: To appear in the Journal of Mathematical Physics 2000 Special Issu
The projector on physical states in loop quantum gravity
We construct the operator that projects on the physical states in loop
quantum gravity. To this aim, we consider a diffeomorphism invariant functional
integral over scalar functions. The construction defines a covariant,
Feynman-like, spacetime formalism for quantum gravity and relates this theory
to the spin foam models. We also discuss how expectation values of physical
quantity can be computed.Comment: 15 pages, 2 figures, substantially revised versio
Causality in Spin Foam Models
We compute Teitelboim's causal propagator in the context of canonical loop
quantum gravity. For the Lorentzian signature, we find that the resultant power
series can be expressed as a sum over branched, colored two-surfaces with an
intrinsic causal structure. This leads us to define a general structure which
we call a ``causal spin foam''. We also demonstrate that the causal evolution
models for spin networks fall in the general class of causal spin foams.Comment: 19 pages, LaTeX2e, many eps figure
On the perturbative expansion of a quantum field theory around a topological sector
The idea of treating general relativistic theories in a perturbative
expansion around a topological theory has been recently put forward in the
quantum gravity literature. Here we investigate the viability of this idea, by
applying it to conventional Yang--Mills theory on flat spacetime. We find that
the expansion around the topological theory coincides with the usual expansion
around the abelian theory, though the equivalence is non-trivial. In this
context, the technique appears therefore to be viable, but not to bring
particularly new insights. Some implications for gravity are discussed.Comment: 7 page
Second-order amplitudes in loop quantum gravity
We explore some second-order amplitudes in loop quantum gravity. In
particular, we compute some second-order contributions to diagonal components
of the graviton propagator in the large distance limit, using the old version
of the Barrett-Crane vertex amplitude. We illustrate the geometry associated to
these terms. We find some peculiar phenomena in the large distance behavior of
these amplitudes, related with the geometry of the generalized triangulations
dual to the Feynman graphs of the corresponding group field theory. In
particular, we point out a possible further difficulty with the old
Barrett-Crane vertex: it appears to lead to flatness instead of Ricci-flatness,
at least in some situations. The observation raises the question whether this
difficulty remains with the new version of the vertex.Comment: 22 pages, 18 figure
Quantum Geometry and Black Hole Entropy
A `black hole sector' of non-perturbative canonical quantum gravity is
introduced. The quantum black hole degrees of freedom are shown to be described
by a Chern-Simons field theory on the horizon. It is shown that the entropy of
a large non-rotating black hole is proportional to its horizon area. The
constant of proportionality depends upon the Immirzi parameter, which fixes the
spectrum of the area operator in loop quantum gravity; an appropriate choice of
this parameter gives the Bekenstein-Hawking formula S = A/4*l_p^2. With the
same choice of the Immirzi parameter, this result also holds for black holes
carrying electric or dilatonic charge, which are not necessarily near extremal.Comment: Revtex, 8 pages, 1 figur
Graviton propagator in loop quantum gravity
We compute some components of the graviton propagator in loop quantum
gravity, using the spinfoam formalism, up to some second order terms in the
expansion parameter.Comment: 41 pages, 6 figure
Nonperturbative dynamics for abstract (p,q) string networks
We describe abstract (p,q) string networks which are the string networks of
Sen without the information about their embedding in a background spacetime.
The non-perturbative dynamical formulation invented for spin networks, in terms
of causal evolution of dual triangulations, is applied to them. The formal
transition amplitudes are sums over discrete causal histories that evolve (p,q)
string networks. The dynamics depend on two free SL(2,Z) invariant functions
which describe the amplitudes for the local evolution moves.Comment: Latex, 12 pages, epsfig, 7 figures, minor change
The volume operator in covariant quantum gravity
A covariant spin-foam formulation of quantum gravity has been recently
developed, characterized by a kinematics which appears to match well the one of
canonical loop quantum gravity. In particular, the geometrical observable
giving the area of a surface has been shown to be the same as the one in loop
quantum gravity. Here we discuss the volume observable. We derive the volume
operator in the covariant theory, and show that it matches the one of loop
quantum gravity, as does the area. We also reconsider the implementation of the
constraints that defines the model: we derive in a simple way the boundary
Hilbert space of the theory from a suitable form of the classical constraints,
and show directly that all constraints vanish weakly on this space.Comment: 10 pages. Version 2: proof extended to gamma > 1
Disordered locality in loop quantum gravity states
We show that loop quantum gravity suffers from a potential problem with
non-locality, coming from a mismatch between micro-locality, as defined by the
combinatorial structures of their microscopic states, and macro-locality,
defined by the metric which emerges from the low energy limit. As a result, the
low energy limit may suffer from a disordered locality characterized by
identifications of far away points. We argue that if such defects in locality
are rare enough they will be difficult to detect.Comment: 11 pages, 4 figures, revision with extended discussion of result
- …