9 research outputs found

    Synthesis and covalent assembly of patchy particles : toward new colloidal molecules

    No full text
    La notion de valence est trĂšs rĂ©pandue Ă  l’échelle de l’atome et est Ă  l’origine de la diversitĂ© et des propriĂ©tĂ©s des composĂ©s covalents (molĂ©cules, macromolĂ©cules, cristaux). L’un des grands challenges Ă  l’heure actuelle est de dĂ©cliner cette notion de valence Ă  l’échelle des particules, qui pourraient devenir des briques Ă©lĂ©mentaires programmĂ©es, c’est-Ă -dire la matiĂšre premiĂšre de nouveaux matĂ©riaux qui seraient obtenus par assemblage spontanĂ©. Dans ce contexte, nous avons dĂ©veloppĂ© des particules Ă  patchs possĂ©dant Ă  leur surface des discontinuitĂ©s chimiques et topologiques permettant de limiter le nombre de particules voisines et d’engendrer des interactions directionnelles avec ces derniĂšres. L’objectif de nos travaux consiste dans un premier temps Ă  imiter les hybridations simples de l’atome de carbone divalent (sp), trivalent (sp2) et tĂ©travalent (sp3). Des particules de silice contenant un nombre spĂ©cifique de cavitĂ©s dans lesquelles se trouvent des chaines de polystyrĂšne ont Ă©tĂ© synthĂ©tisĂ©es et fonctionnalisĂ©es sĂ©lectivement. Des molĂ©cules colloĂŻdales constituĂ©es d’une particule Ă  patchs, au centre, entourĂ©e de nanoparticules satellites en nombre contrĂŽlĂ© ont Ă©tĂ© obtenues par assemblages covalents ou supramolĂ©culaires. Ces premiers clusters miment la gĂ©omĂ©trie de molĂ©cules simples telles que CF4, BF3, CO2 ou H2O. En diffĂ©renciant des lots de satellites soit par leur taille, soit par leur composition chimique, nous avons montrĂ© qu’il est possible d’étendre la formation de molĂ©cules colloĂŻdales vers de structures plus complexes du type AXnYm (n+m = 4) ou encore des molĂ©cules colloĂŻdales chirales. Enfin, nous avons dĂ©veloppĂ© une autre voie permettant d’obtenir de nouveaux atomes colloĂŻdaux contenant un nombre dĂ©fini de patchs surfaciques de taille contrĂŽlĂ©e.The concept of valence is well-known at the atomic level and is at the origin of the diversity and properties of covalent compounds (molecules, macromolecules, crystals). Nowadays, one of the major challenges is to decline this notion of valence at the scale of colloidal particles, which could become programmed elementary bricks, that is to say the raw material of new materials that would be obtained by spontaneous assembly. In this context, we have developed patchy particles with chemical and topological discontinuities at their surface that limit the number of neighboring particles and induce directional interactions with them. The objective of our work consists first in imitating simple hybridizations of the divalent (sp), trivalent (sp2) and tetravalent (sp3) carbon atoms. The silica particles containing a specific number of cavities in which residues of polystyrene chains are chemically and selectively functionalized. Colloidal molecules consisting of a patchy particle, in the center, surrounded by satellite nanoparticles in controlled number were obtained by covalent or supramolecular routes. These first clusters mimic the geometry of simple molecules such as CF4, BF3, CO2 or H2O. By differentiating batches of satellites either by their size or by their chemical composition, we have shown that it is possible to extend the formation of colloidal molecules to more complex AXnYm (n + m = 4) structures or chiral colloidal molecules. Finally, we have developed another way to obtain new colloidal atoms containing a precise number of surface patches with a controlled area

    Synthesis and covalent assembly of patchy particles : toward new colloidal molecules

    No full text
    La notion de valence est trĂšs rĂ©pandue Ă  l’échelle de l’atome et est Ă  l’origine de la diversitĂ© et des propriĂ©tĂ©s des composĂ©s covalents (molĂ©cules, macromolĂ©cules, cristaux). L’un des grands challenges Ă  l’heure actuelle est de dĂ©cliner cette notion de valence Ă  l’échelle des particules, qui pourraient devenir des briques Ă©lĂ©mentaires programmĂ©es, c’est-Ă -dire la matiĂšre premiĂšre de nouveaux matĂ©riaux qui seraient obtenus par assemblage spontanĂ©. Dans ce contexte, nous avons dĂ©veloppĂ© des particules Ă  patchs possĂ©dant Ă  leur surface des discontinuitĂ©s chimiques et topologiques permettant de limiter le nombre de particules voisines et d’engendrer des interactions directionnelles avec ces derniĂšres. L’objectif de nos travaux consiste dans un premier temps Ă  imiter les hybridations simples de l’atome de carbone divalent (sp), trivalent (sp2) et tĂ©travalent (sp3). Des particules de silice contenant un nombre spĂ©cifique de cavitĂ©s dans lesquelles se trouvent des chaines de polystyrĂšne ont Ă©tĂ© synthĂ©tisĂ©es et fonctionnalisĂ©es sĂ©lectivement. Des molĂ©cules colloĂŻdales constituĂ©es d’une particule Ă  patchs, au centre, entourĂ©e de nanoparticules satellites en nombre contrĂŽlĂ© ont Ă©tĂ© obtenues par assemblages covalents ou supramolĂ©culaires. Ces premiers clusters miment la gĂ©omĂ©trie de molĂ©cules simples telles que CF4, BF3, CO2 ou H2O. En diffĂ©renciant des lots de satellites soit par leur taille, soit par leur composition chimique, nous avons montrĂ© qu’il est possible d’étendre la formation de molĂ©cules colloĂŻdales vers de structures plus complexes du type AXnYm (n+m = 4) ou encore des molĂ©cules colloĂŻdales chirales. Enfin, nous avons dĂ©veloppĂ© une autre voie permettant d’obtenir de nouveaux atomes colloĂŻdaux contenant un nombre dĂ©fini de patchs surfaciques de taille contrĂŽlĂ©e.The concept of valence is well-known at the atomic level and is at the origin of the diversity and properties of covalent compounds (molecules, macromolecules, crystals). Nowadays, one of the major challenges is to decline this notion of valence at the scale of colloidal particles, which could become programmed elementary bricks, that is to say the raw material of new materials that would be obtained by spontaneous assembly. In this context, we have developed patchy particles with chemical and topological discontinuities at their surface that limit the number of neighboring particles and induce directional interactions with them. The objective of our work consists first in imitating simple hybridizations of the divalent (sp), trivalent (sp2) and tetravalent (sp3) carbon atoms. The silica particles containing a specific number of cavities in which residues of polystyrene chains are chemically and selectively functionalized. Colloidal molecules consisting of a patchy particle, in the center, surrounded by satellite nanoparticles in controlled number were obtained by covalent or supramolecular routes. These first clusters mimic the geometry of simple molecules such as CF4, BF3, CO2 or H2O. By differentiating batches of satellites either by their size or by their chemical composition, we have shown that it is possible to extend the formation of colloidal molecules to more complex AXnYm (n + m = 4) structures or chiral colloidal molecules. Finally, we have developed another way to obtain new colloidal atoms containing a precise number of surface patches with a controlled area

    SynthÚse et assemblages covalents de particules à patchs : vers de nouvelles molécules colloïdales

    No full text
    The concept of valence is well-known at the atomic level and is at the origin of the diversity and properties of covalent compounds (molecules, macromolecules, crystals). Nowadays, one of the major challenges is to decline this notion of valence at the scale of colloidal particles, which could become programmed elementary bricks, that is to say the raw material of new materials that would be obtained by spontaneous assembly. In this context, we have developed patchy particles with chemical and topological discontinuities at their surface that limit the number of neighboring particles and induce directional interactions with them. The objective of our work consists first in imitating simple hybridizations of the divalent (sp), trivalent (sp2) and tetravalent (sp3) carbon atoms. The silica particles containing a specific number of cavities in which residues of polystyrene chains are chemically and selectively functionalized. Colloidal molecules consisting of a patchy particle, in the center, surrounded by satellite nanoparticles in controlled number were obtained by covalent or supramolecular routes. These first clusters mimic the geometry of simple molecules such as CF4, BF3, CO2 or H2O. By differentiating batches of satellites either by their size or by their chemical composition, we have shown that it is possible to extend the formation of colloidal molecules to more complex AXnYm (n + m = 4) structures or chiral colloidal molecules. Finally, we have developed another way to obtain new colloidal atoms containing a precise number of surface patches with a controlled area.La notion de valence est trĂšs rĂ©pandue Ă  l’échelle de l’atome et est Ă  l’origine de la diversitĂ© et des propriĂ©tĂ©s des composĂ©s covalents (molĂ©cules, macromolĂ©cules, cristaux). L’un des grands challenges Ă  l’heure actuelle est de dĂ©cliner cette notion de valence Ă  l’échelle des particules, qui pourraient devenir des briques Ă©lĂ©mentaires programmĂ©es, c’est-Ă -dire la matiĂšre premiĂšre de nouveaux matĂ©riaux qui seraient obtenus par assemblage spontanĂ©. Dans ce contexte, nous avons dĂ©veloppĂ© des particules Ă  patchs possĂ©dant Ă  leur surface des discontinuitĂ©s chimiques et topologiques permettant de limiter le nombre de particules voisines et d’engendrer des interactions directionnelles avec ces derniĂšres. L’objectif de nos travaux consiste dans un premier temps Ă  imiter les hybridations simples de l’atome de carbone divalent (sp), trivalent (sp2) et tĂ©travalent (sp3). Des particules de silice contenant un nombre spĂ©cifique de cavitĂ©s dans lesquelles se trouvent des chaines de polystyrĂšne ont Ă©tĂ© synthĂ©tisĂ©es et fonctionnalisĂ©es sĂ©lectivement. Des molĂ©cules colloĂŻdales constituĂ©es d’une particule Ă  patchs, au centre, entourĂ©e de nanoparticules satellites en nombre contrĂŽlĂ© ont Ă©tĂ© obtenues par assemblages covalents ou supramolĂ©culaires. Ces premiers clusters miment la gĂ©omĂ©trie de molĂ©cules simples telles que CF4, BF3, CO2 ou H2O. En diffĂ©renciant des lots de satellites soit par leur taille, soit par leur composition chimique, nous avons montrĂ© qu’il est possible d’étendre la formation de molĂ©cules colloĂŻdales vers de structures plus complexes du type AXnYm (n+m = 4) ou encore des molĂ©cules colloĂŻdales chirales. Enfin, nous avons dĂ©veloppĂ© une autre voie permettant d’obtenir de nouveaux atomes colloĂŻdaux contenant un nombre dĂ©fini de patchs surfaciques de taille contrĂŽlĂ©e

    Synthesis and covalent assembly of patchy particles : toward new colloidal molecules

    No full text
    La notion de valence est trĂšs rĂ©pandue Ă  l’échelle de l’atome et est Ă  l’origine de la diversitĂ© et des propriĂ©tĂ©s des composĂ©s covalents (molĂ©cules, macromolĂ©cules, cristaux). L’un des grands challenges Ă  l’heure actuelle est de dĂ©cliner cette notion de valence Ă  l’échelle des particules, qui pourraient devenir des briques Ă©lĂ©mentaires programmĂ©es, c’est-Ă -dire la matiĂšre premiĂšre de nouveaux matĂ©riaux qui seraient obtenus par assemblage spontanĂ©. Dans ce contexte, nous avons dĂ©veloppĂ© des particules Ă  patchs possĂ©dant Ă  leur surface des discontinuitĂ©s chimiques et topologiques permettant de limiter le nombre de particules voisines et d’engendrer des interactions directionnelles avec ces derniĂšres. L’objectif de nos travaux consiste dans un premier temps Ă  imiter les hybridations simples de l’atome de carbone divalent (sp), trivalent (sp2) et tĂ©travalent (sp3). Des particules de silice contenant un nombre spĂ©cifique de cavitĂ©s dans lesquelles se trouvent des chaines de polystyrĂšne ont Ă©tĂ© synthĂ©tisĂ©es et fonctionnalisĂ©es sĂ©lectivement. Des molĂ©cules colloĂŻdales constituĂ©es d’une particule Ă  patchs, au centre, entourĂ©e de nanoparticules satellites en nombre contrĂŽlĂ© ont Ă©tĂ© obtenues par assemblages covalents ou supramolĂ©culaires. Ces premiers clusters miment la gĂ©omĂ©trie de molĂ©cules simples telles que CF4, BF3, CO2 ou H2O. En diffĂ©renciant des lots de satellites soit par leur taille, soit par leur composition chimique, nous avons montrĂ© qu’il est possible d’étendre la formation de molĂ©cules colloĂŻdales vers de structures plus complexes du type AXnYm (n+m = 4) ou encore des molĂ©cules colloĂŻdales chirales. Enfin, nous avons dĂ©veloppĂ© une autre voie permettant d’obtenir de nouveaux atomes colloĂŻdaux contenant un nombre dĂ©fini de patchs surfaciques de taille contrĂŽlĂ©e.The concept of valence is well-known at the atomic level and is at the origin of the diversity and properties of covalent compounds (molecules, macromolecules, crystals). Nowadays, one of the major challenges is to decline this notion of valence at the scale of colloidal particles, which could become programmed elementary bricks, that is to say the raw material of new materials that would be obtained by spontaneous assembly. In this context, we have developed patchy particles with chemical and topological discontinuities at their surface that limit the number of neighboring particles and induce directional interactions with them. The objective of our work consists first in imitating simple hybridizations of the divalent (sp), trivalent (sp2) and tetravalent (sp3) carbon atoms. The silica particles containing a specific number of cavities in which residues of polystyrene chains are chemically and selectively functionalized. Colloidal molecules consisting of a patchy particle, in the center, surrounded by satellite nanoparticles in controlled number were obtained by covalent or supramolecular routes. These first clusters mimic the geometry of simple molecules such as CF4, BF3, CO2 or H2O. By differentiating batches of satellites either by their size or by their chemical composition, we have shown that it is possible to extend the formation of colloidal molecules to more complex AXnYm (n + m = 4) structures or chiral colloidal molecules. Finally, we have developed another way to obtain new colloidal atoms containing a precise number of surface patches with a controlled area

    Colloidal molecules from valence‐endowed nanoparticles by covalent chemistry

    No full text
    We demonstrate a simple method to create a variety of silica‐based colloidal molecules through the covalent assembly of site‐specifically functionalized patchy nanoparticles with complementary nanospheres. Colloidal analogues of BeBr2, BBr3 and CBr4 are obtained from sp‐, sp2‐ and sp3‐like particles, while Br2O and NBr3 analogues can be fabricated by varying the relative amounts of both colloidal precursors. We also show that it is possible to attach covalently silica nanospheres of various sizes to one central patchy nanoparticle, which leads to the formation of more complex colloidal molecules, including chiral ones. The possibility to easily extend the strategy to other colloidal precursors which can serve as satellites, for example, ellipsoidal polymer particles or metallic nanoparticles, opens the way to a rich variety of new colloidal analogues of atoms which could serve as building blocks of next generation materials.Dilater le systĂšme atomique conventionnel Ă  l'Ă©chelle colloĂŻdale grĂące Ă  des particules prĂ©programmĂ©es pour une valence donnĂ©eInitiative d'excellence de l'UniversitĂ© de Bordeau

    Synthesis of tetrahedral patchy nanoparticles with controlled patch size

    No full text
    Silica nanoparticles with four circular surface patches made of polystyrene (PS) and arranged in a tetrahedral symmetry are synthesized through the multi-step growth of the silica core of silica/PS tetrapods. Transmission electron microscopy and energy dispersive X-Ray analysis studies indicate that, as the silica core regrows, its surface conforms to the shape of the polystyrene nodules, allowing good control of the size of the emerged fraction of these. Patches with an angular width as small as 49° were achieved, which is a prerequisite for their assembly in the form of a diamond crystal phase

    Colloidal chemistry with patchy silica nanoparticles

    No full text
    We report a new route to synthesize clusters, or so-called colloidal molecules (CMs), which mimic the symmetry of molecular structures made of one central atom. We couple site-specifically functionalized patchy nanoparticles, i.e., valence-endowed colloidal atoms (CAs), with complementary nanospheres through amide bonds. By analogy with the Gillespie formalism, we show that AX4, AX3E1 and AX2E2 CMs can be obtained from tetravalent sp3-like CAs when the relative amount of both building units is varied in a controlled manner. We obtain AX2 CMs from divalent sp-like CAs. We also show that it is possible to covalently attach two different types of satellites to the same central patchy nanoparticle to create more complex CMs, opening the way to the fabrication of new multifunctional nanostructures with well-controlled shape and composition.Dilater le systÚme atomique conventionnel à l'échelle colloïdale grùce à des particules préprogrammées pour une valence donnéeInitiative d'excellence de l'Université de Bordeau

    Regioselective functionalization of dimpled silica particles

    No full text
    Multipod-like particles made of a silica core surrounded by polystyrene nodules have been used as precur-sors to synthesize silica particles with 3 or 12 dimples through the selective growth of the dielectric core.Using the polymer nodules as temporary protecting masks, we regioselectively grafted amino groupsonto the unprotected silica surface, as revealed by the adsorption of gold markers. After dissolution ofthe PS nodules, some polymer chains remained grafted onto the silica surface, forming organic bumps atthe bottom of the dimples. These residues were also selectively functionalized, leading to silica particleswith both entropic and enthalpic patches.Towards Colloidal Molecules and Functional MaterialsInitiative d'excellence de l'Université de Bordeau
    corecore