370 research outputs found

    Long-life mission reliability for outer planet atmospheric entry probes

    Get PDF
    The results of a literature analysis on the effects of prolonged exposure to deep space environment on the properties of outer planet atmospheric entry probe components are presented. Materials considered included elastomers and plastics, pyrotechnic devices, thermal control components, metal springs and electronic components. The rates of degradation of each component were determined and extrapolation techniques were used to predict the effects of exposure for up to eight years to deep space. Pyrotechnic devices were aged under accelerated conditions to an equivalent of eight years in space and functionally tested. Results of the literature analysis of the selected components and testing of the devices indicated that no severe degradation should be expected during an eight year space mission

    Active Vibration Control Device

    Get PDF
    An active vibration control device for controlling vibration in a cantilevered member and a method for the same are disclosed. The device is comprised of a cantilevered member having a longitudinal axis comprising a sensor mounted near the free end of the member to measure motion of the member in a transverse direction and to produce a corresponding signal. A force generating assembly is mounted to the member near the free end to oppose the measured motion with a force thereby minimizing subsequent motion along the transverse axis caused by vibration

    Evaluation of a patient-specific finite-element model to simulate conservative treatment in adolescent idiopathic scoliosis

    Get PDF
    PublishedJournal ArticleAuthor's accepted manuscript.Study design: Retrospective validation study. Objectives: To propose a method to evaluate, from a clinical standpoint, the ability of a finite-element model (FEM) of the trunk to simulate orthotic correction of spinal deformity and to apply it to validate a previously described FEM. Summary of background data: Several FEMs of the scoliotic spine have been described in the literature. These models can prove useful in understanding the mechanisms of scoliosis progression and in optimizing its treatment, but their validation has often been lacking or incomplete. Methods: Three-dimensional (3D) geometries of 10 patients before and during conservative treatment were reconstructed from biplanar radiographs. The effect of bracing was simulated by modeling displacements induced by the brace pads. Simulated clinical indices (Cobb angle, T1-T12 and T4-T12 kyphosis, L1-L5 lordosis, apical vertebral rotation, torsion, rib hump) and vertebral orientations and positions were compared to those measured in the patients' 3D geometries. Results: Errors in clinical indices were of the same order of magnitude as the uncertainties due to 3D reconstruction; for instance, Cobb angle was simulated with a root mean square error of 5.7°, and rib hump error was 5.6°. Vertebral orientation was simulated with a root mean square error of 4.8° and vertebral position with an error of 2.5 mm. Conclusions: The methodology proposed here allowed in-depth evaluation of subject-specific simulations, confirming that FEMs of the trunk have the potential to accurately simulate brace action. These promising results provide a basis for ongoing 3D model development, toward the design of more efficient orthoses.ParisTech BiomecAM chair programProteorParisTechYves Cotrel Foundation

    Small Angle X-Ray and Neutron Scattering - Its Application to Supramolecular Solutions

    Get PDF
    Contains reports on seven research projects

    Filmic geographies: audio-visual, embodied-material

    Get PDF
    Although conventionally described as a ‘visual’ method, film-making is also increasingly used within research on embodiment. However, much remains to be said about the ability of filmic methods to enhance researchers’ capacity to think and research through the body. Drawing on my experience of making four research films, in this paper, I attempt to advance this agenda in three steps. First, I introduce anthropological work on the filming body to shed light on the technologically-mediated encounters that enfold around a camera and discuss how they might inform geographical thinking. Second, I describe the corporeally-mediated object ecologies that take shape within the filming setting and highlight how a camera might make objects ‘speak’. Finally, I discuss the affective dimension of screening research films to research participants and the contribution of such intense events to the articulation of collective matters of concerns. Through these three themes, I make the case for understanding knowledge production as located not merely in encounters with filmed audio-visual content, but also in the embodied-material encounters of bodies and objects around the filming and screening apparatus. I finally discuss the implications of these reflections for conceptualising the ‘body’ within embodied methods in social and cultural geography

    Probing structural relaxation in complex fluids by critical fluctuations

    Full text link
    Complex fluids, such as polymer solutions and blends, colloids and gels, are of growing interest in fundamental and applied soft-condensed-matter science. A common feature of all such systems is the presence of a mesoscopic structural length scale intermediate between atomic and macroscopic scales. This mesoscopic structure of complex fluids is often fragile and sensitive to external perturbations. Complex fluids are frequently viscoelastic (showing a combination of viscous and elastic behaviour) with their dynamic response depending on the time and length scales. Recently, non-invasive methods to infer the rheological response of complex fluids have gained popularity through the technique of microrheology, where the diffusion of probe spheres in a viscoelastic fluid is monitored with the aid of light scattering or microscopy. Here we propose an alternative to traditional microrheology that does not require doping of probe particles in the fluid (which can sometimes drastically alter the molecular environment). Instead, our proposed method makes use of the phenomenon of "avoided crossing" between modes associated with the structural relaxation and critical fluctuations that are spontaneously generated in the system.Comment: 4 pages, 4 figure

    Small Angle X-Ray and Neutron Scattering - Its Application to Supramolecular Solutions

    Get PDF
    Contains reports on seven research projects.Argonne National LaboratoryU.S. Department of Energy DE-FG01-90ER45429National Science FoundationUniversity of Florence, ItalyExxon FellowshipNational Science Foundation Grant INT 87-508

    AmĂ©lioration de la connaissance des causes d'incendie de forĂȘt et mise en place d'une base de donnĂ©es gĂ©orĂ©fĂ©rencĂ©es

    Get PDF
    Dans le cadre du programme Forest Focus, le Cemagref d'Aix-en-Provence a rĂ©alisĂ© un guide technique intitulĂ© « AmĂ©lioration de la connaissance des causes de dĂ©part de feu de forĂȘt » et l'agence MTDA a dĂ©veloppĂ© le prototype d'un module de saisie et de cartographie interactive des incendies de forĂȘt. Cet article prĂ©sente la mĂ©thode d'investigation de recherche des causes de dĂ©part de feu adaptĂ©e au contexte mĂ©diterranĂ©en français ; un encadrĂ© concerne spĂ©cifiquement le module de saisie et de cartographie interactive permettant d'alimenter une base de donnĂ©es gĂ©orĂ©fĂ©rencĂ©es

    Developing a methodology towards sustainable PCD compact core drilling on planet Mars

    Get PDF
    ABSTRACT This paper describes a study of core drilling into basalt rock in anticipation of a Mars mission. Since the objective is to maintain a sustainable drilling mission on this distant planet, we perform a methodical study to examine parameters which influence sustainability including PCD tool-wear and drilling forces. INTRODUCTION Two gradual modes of insert-wear are experimentally measured: flank wear (VB) and cutting edge radius wear (CERW). Furthermore, relevant equations that relate wear to several factors including rock strength and process parameters are developed. The findings suggest a strong influence of rock hardness, process parameters, and tool geometry on tool-wear. Similar functional dependence is found for the generated thrust force and torque on rock hardness, rake angle, spindle speed, and drill feed. Consequently, equations are derived to model thrust force and torque as functions of these variables
    • 

    corecore